How to GCPC

The GCPC Jury

June 2, 2024

Contents

1 Before submitting 2
1.1 Picking aproblemtosolve L L L. 2
1.2 Solving problems and designing algorithms 2
1.3 Estimating the running time 2
1.4 Implementation 3
1.5 Running and testing yourcode Lo L oL 4

2 After submitting 4
21 Generaladvice L L 5
22 Wrong ANnSWer o i it e e 5
2.3 Time Limit Exceeded oL 6
24 RunTimeError 0 000 6
25 Compiler Error. L 6

3 Miscellaneous Tips and Tricks 6
3.1 BuiltinDataTypes 6
3.2 FastI/O o e 7
3.3 Compiler Options for C++ 7

This document is intended to provide some guidance for teams participating in the Winter
Contest or the GCPC for the first time, but may also be a useful reference for more experienced
contestants. It includes tips and tricks for all parts of the contest, from reading the problem set
to designing an algorithm to coding that algorithm to making a correct submission.

1 Before submitting

1.1 Picking a problem to solve

When you first open up the problem set at the start of the contest, there will be a large number
of problems to choose from, so where do you even begin solving all of those? The first thing to
note is that the problem set covers a wide range of topics and difficulties, so you should make
sure to read all the problems between the members of your team and then work on the problems
that look the most fun and approachable to you. In the Winter Contest, the easiest problems
are marked on the title page of your problem set, and those should be a great place to start!

You should also keep an eye on the scoreboard to see which problems other teams are solving
(or not solving), as problems can often be easier or harder than they appear at first sight.
Especially as a beginner team you should make sure not to sink a lot of time into a really hard
problem.

1.2 Solving problems and designing algorithms

This is of course heavily dependent on the problem at hand, but here are some very general
ideas and techniques that are widely applicable:

+ Find an abstract formulation of the problem. Does it relate to something familiar?

« Sorting, binary search, divide and conquer, greedy, dynamic programming.

« Work out some small examples on paper. Try to spot any patterns.

+ Use the simplest algorithm that fits the constraints. If you try to be super smart you might
lose a lot of time.

1.3 Estimating the running time

Before implementing your algorithm, it’s important to check that it has the right time complexity.
Many problems have a relatively straightforward solution that is too slow for the given bounds,
which means that your task is to come up with a better algorithm! To help you gauge whether
your approach is good enough, here’s a rough estimate of the maximal input sizes that an
algorithm with given time complexity will be able to handle.

o(n!) n <10 O(nlog?(n)) n<10°
o2 n <20 O(nlog(n)) n < 10°
o(n®) n < 500 O(n) n < 10°
O(n*log(n)) n <1000 O(Wn) n < 10"
O(n?) n <5000 O(log(n)) n<10"®
O(nvn) n<10°

In general, it is much more important to have the right time complexity than it is to
optimize for runtime constants. The input bounds and timelimit are usually quite lenient,
and an efficient implementation of the intended algorithm will typically only use fractions of the

allotted running time. Conversely, algorithms with worse time complexity will generally time
out regardless of the amount of constant optimization that is put into their implementation.

It is also important to note that time complexity always refers to the worst-case time com-
plexity, and heuristic approaches are unlikely to pass all the secret test data, even if they are
fast in the average case.

This being said, not all operations are created equal. This is likely not a problem, but
considering it may help if your algorithm has the right time complexity but is still too slow. For
instance, if your code is O(n), but also needs to store that amount of data in a dictionary, then
something like n < 10° is more realistic than the n < 10® from the above table. Potentially slow
operations include:

« Usage of hashing data structures, such as unordered_map, HashSet, dict.

+ I/O operations; see Section 3.2 for speedups, but it will always be relatively slow.

« Memory access; the smaller your memory usage, the less caching there needs to be.

« Floating point functions such as sqrt, log, exp, pow and trigonometric functions.
Other factors that come into play are the choice of programming language (C++ is generally
faster than Java and Python), and the time limit of the specific problem.

1.4 Implementation

Use the language that you or your team is most comfortable with. Each submission must read
from the standard input and write to the standard output. Here are sample implementations of
a simple A+B program in C++, Java and Python.

o C++:

#include <iostream>
using namespace std;

int main() {
int a, b;
cin >> a >> b;
cout << a+b << '\n';

}

« Java:

import java.util.sx;

public class A {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int a = sc.nextInt();
int b = sc.nextInt();
System.out.println(a+b);

+ Python:

a, b = map(int, input().split())
print(a+b)

All of the contest’s languages already provide many different algorithms and data structures as
part of their standard library, such as sorting, binary search trees and hash tables. Use those
instead of implementing your own.

While programming contests are ultimately about speed, you should still try to keep your
code as simple and clean as possible, as that makes it far easier to debug if things go wrong.

It is generally a good idea to get at least a rough overview of how the entire program is going
to look before diving into the implementation right away. Ideally, your code is written all in
one go and you don’t need to spend any time refactoring.

1.5 Running and testing your code

Always test your code on all the provided sample data (which you can download from the
judging system). The following assumes you are using a command line environment. Either
open one directly or use the one that’s included in your IDE or text editor. To build/run your
program, use the following commands:

Build Run
C++ g++ -std=c++20 -g A.cpp -0 A /A
Java javac A.java java A
Python - python3 A.py

To test your code on the provided sample data, download the zip archive from the website,
extract it to a directory samples, then use the following (this is for C++, replace ./A with the
appropriate run command for your chosen language, see above).

./A < samples/A/1l.in | diff -s - samples/A/l.ans

Do this for all samples. Depending on the problem, the output may not be unique, in which
case you need to inspect the output of the diff carefully. If the problem is interactive, follow
the instructions in the provided testing tool.

You may then want to test your code on some handcrafted cases, especially if the input format
makes it easy to do so. Sometimes it can also be a good idea to write a simple script to generate
additional tests, but of course this takes up some of your team’s valuable screen time.

2 After submitting

If all went well, your submission was accepted and you can move on to the next problem while
waiting for your well-deserved balloon, congratulations! If not, here are a few checklists to help
you with your trouble shooting, grouped by the type of verdict your submission received. Note
that the boundaries between these categories are not sharp, as some of these mistakes may

manifest in different errors. Most notably, memory access violations in C++ may sometimes
cause your program to read garbage values without crashing. Your submission may also receive
multiple different negative verdicts, but you are only shown the first one to occur.

2.1 General advice

Click on your submission to see its results on the sample cases.
Did you submit on the right problem? Did you submit the right file?

Think about possible corner cases (e.g. very small (n = 0,n = 1) or very large inputs) and
test your submission on those (Section 1.5).

Print your code, let a teammate continue with a different problem.

Do some debugging, either using some debugging tool or some simple printf statements.
Be aware that this eats into your precious screen time though!

Try to explain your code line by line to a teammate.

Consider shelving the problem for later or abandoning it altogether.

2.2 Wrong Answer

Check the given sample cases again (Section 1.5).
Try to find possible corner cases you have not yet considered or tested.

Read the problem statement again. Did you understand the problem correctly? Are you
making any assumptions that are not justified by the problem statement?

In C++/Java, check for integer overflow (Section 3.1).

In C++/Java, float is too imprecise, use double instead (Section 3.1).

Outputting floating point values: print with enough precision (Section 3.1).

In C++/Java, % may return negative numbers, e.g. (-5) % 3 == -2.

Don’t use the pow function in C++/Java/Python, as it returns floating point numbers.

Avoid doing comparisons (<,<=,==,...) on floating point numbers, as these are prone to
fail due to rounding errors.

Are you doing floating point calculations that may result in NaN?

2.3 Time Limit Exceeded

« Make sure that your code has the right time complexity (Section 1.3).

« Also check the time incurred by library functions. For instance, random access operations
on certain data structures may use a linear amount of time. Consult the documentation.

« Check for infinite loops or endless recursion, especially on corner cases.
+ Are you outputting large amounts of text to stderr?

« Function arguments in C++ are passed by value (copy). Use & to pass by reference.

2.4 Run Time Error

+ Check for divisions by 0 or other math errors such as sqrts of negative numbers.
« In Python, importing external libraries such as NumPy causes a run time error.

« Do you have any assertions in your code that may fail?

« Are you calling library functions with invalid input? Check the documentation.

+ Does your program try to allocate more than the memory limit (2GB)?

+ Check for out of bounds access on arrays/vectors.

« Deep recursion may cause a stack overflow, especially in Java and Python.

2.5 Compiler Error

« Click on your submission to check the error message.

3 Miscellaneous Tips and Tricks

3.1 Builtin Data Types

« In C++/Java, int can only represent numbers up to 23! — 1 ~ 2 - 10°. For larger integers,
use long long in C++ or long in Java, which both range up to 26> — 1 ~ 9 - 1018,

+ Never use float in C++/Java, prefer double instead. Note that Python’s float is equiva-
lent to the latter. Avoid using floating point numbers as much as possible, as they are
susceptible to rounding errors (e.g. 3+0.3 does not equal 0.9 in floating point arithmetic).

In C++, floating point numbers are only printed to 5 digits of precision by default, which is
often not enough. To print more digits, use

cout << fixed << setprecision(20) << sqrt(2) << '\n‘';

It is generally a good idea to always print more digits than you think are required.

3.2 Fastl/O

If your submission needs to process large amounts of input, you can use the following tricks
to speed it up. However, note that the timelimits are generally set so that none of these
optimizations should be required. In particular, if your algorithm has the wrong time complexity
(see Section 1.3) your submission will very likely be too slow even with heavily optimized I/O.

o In C++, add cin.tie(0)->sync_with_stdio(0); at the start of main. Note that if you do
this you can no longer mix cin and scanf. Use '\n"' instead of endl.

« In Java, Scanner is slow. Consider using BufferedReader instead.

« In Python, PyPy generally optimizes I/O quite well. If you need more speed, you can use
io.BytesIO.

3.3 Compiler Options for C++

In C++, you can use the following additional flags for g++ which try (but do not guarantee!) to
catch undefined behaviour and segmentation faults at run time:

-ftrapv -fsanitize=address,undefined
The following flags check for various common mistakes at compile time:
-Wall -Wextra

Check the team information sheet for the compiler flags used by the judging system.

