
GCPC 2025 Presentation of Solutions

German Collegiate Programming Contest 2025

The GCPC Jury
August 9, 2025



GCPC 2025 Jury

• Andreas Grigorjew
Paris Dauphine FR, CPUlm

• Niko Hastrich
Saarland University

• Yvonne Kothmeier
• Felicia Lucke

Durham University UK, CPUlm
• Niklas Mohrin

Hasso-Plattner-Institut Potsdam
• Jannik Olbrich

Ulm University, CPUlm
• Lucas Schwebler

Karlsruhe Institute of Technology

• Christopher Weyand
MOIA GmbH, CPUlm

• Paul Wild
Friedrich-Alexander University
Erlangen-Nürnberg, CPUlm

• Wendy Yi
Karlsruhe Institute of Technology, CPUlm

• Yidi Zang
Karlsruhe Institute of Technology

• Michael Zündorf
Karlsruhe Institute of Technology, CPUlm



GCPC 2025 Test Solvers

• Jonathan Dransfeld
Karlsruhe Institute of Technology

• Paula Marten
Hasso-Plattner-Institute Potsdam

• Michael Ruderer
Augsburg University, CPUlm

• Franz Sauerwald
Hasso-Plattner-Institute Potsdam



GCPC 2025 Technical Team

• Nathan Maier
CPUlm

• Alexander Schmid
CPUlm

• Pascal Weber
University of Vienna, CPUlm



A: Around the Table
Problem author: Wendy Yi, Michael Zündorf

Problem
Given ℓ players on the left of a table and r players on the right, how many different pairs face each
other during a game of around-the-table?

01. . . ℓ ℓ+1 . . .



A: Around the Table
Problem author: Wendy Yi, Michael Zündorf

01. . . ℓ ℓ+1 . . .

Observations

• Player i on the left may face player i + ℓ and player i + ℓ − 1 (modn)
• Player i on the right may face player i + r and player i + r + 1 (modn)

• Each player faces ≤ 4 different players =⇒ ≤ 2n pairs in total with n players
• Some of the four indices may be equal =⇒ fewer opponents per player in this case

Solution

• If r = ℓ − 1, then each player faces two different players =⇒ n pairs
• If r = ℓ or r = ℓ − 2, then each player faces three different players =⇒ n + n

2 pairs
• Else 2n pairs



A: Around the Table
Problem author: Wendy Yi, Michael Zündorf

01. . . ℓ ℓ+1 . . .

Observations

• Player i on the left may face player i + ℓ and player i + ℓ − 1 (modn)
• Player i on the right may face player i + r and player i + r + 1 (modn)
• Each player faces ≤ 4 different players =⇒ ≤ 2n pairs in total with n players

• Some of the four indices may be equal =⇒ fewer opponents per player in this case

Solution

• If r = ℓ − 1, then each player faces two different players =⇒ n pairs
• If r = ℓ or r = ℓ − 2, then each player faces three different players =⇒ n + n

2 pairs
• Else 2n pairs



A: Around the Table
Problem author: Wendy Yi, Michael Zündorf

01. . . ℓ ℓ+1 . . .

Observations

• Player i on the left may face player i + ℓ and player i + ℓ − 1 (modn)
• Player i on the right may face player i + r and player i + r + 1 (modn)
• Each player faces ≤ 4 different players =⇒ ≤ 2n pairs in total with n players
• Some of the four indices may be equal =⇒ fewer opponents per player in this case

Solution

• If r = ℓ − 1, then each player faces two different players =⇒ n pairs
• If r = ℓ or r = ℓ − 2, then each player faces three different players =⇒ n + n

2 pairs
• Else 2n pairs



A: Around the Table
Problem author: Wendy Yi, Michael Zündorf

01. . . ℓ ℓ+1 . . .

Observations

• Player i on the left may face player i + ℓ and player i + ℓ − 1 (modn)
• Player i on the right may face player i + r and player i + r + 1 (modn)
• Each player faces ≤ 4 different players =⇒ ≤ 2n pairs in total with n players
• Some of the four indices may be equal =⇒ fewer opponents per player in this case

Solution

• If r = ℓ − 1, then each player faces two different players =⇒ n pairs

• If r = ℓ or r = ℓ − 2, then each player faces three different players =⇒ n + n
2 pairs

• Else 2n pairs



A: Around the Table
Problem author: Wendy Yi, Michael Zündorf

01. . . ℓ ℓ+1 . . .

Observations

• Player i on the left may face player i + ℓ and player i + ℓ − 1 (modn)
• Player i on the right may face player i + r and player i + r + 1 (modn)
• Each player faces ≤ 4 different players =⇒ ≤ 2n pairs in total with n players
• Some of the four indices may be equal =⇒ fewer opponents per player in this case

Solution

• If r = ℓ − 1, then each player faces two different players =⇒ n pairs
• If r = ℓ or r = ℓ − 2, then each player faces three different players =⇒ n + n

2 pairs

• Else 2n pairs



A: Around the Table
Problem author: Wendy Yi, Michael Zündorf

01. . . ℓ ℓ+1 . . .

Observations

• Player i on the left may face player i + ℓ and player i + ℓ − 1 (modn)
• Player i on the right may face player i + r and player i + r + 1 (modn)
• Each player faces ≤ 4 different players =⇒ ≤ 2n pairs in total with n players
• Some of the four indices may be equal =⇒ fewer opponents per player in this case

Solution

• If r = ℓ − 1, then each player faces two different players =⇒ n pairs
• If r = ℓ or r = ℓ − 2, then each player faces three different players =⇒ n + n

2 pairs
• Else 2n pairs



B: Bustling Busride
Problem author: Niko Hastrich

Problem
Partition people queuing for a bus into contiguous segments minimizing the latest arrival time.
All people on the bus need to leave and possibly reenter at every stop (taking some time).

Solution

• Binary Search the answer a∗.
• For each tested a, put as many people into one bus B as possible while not arriving after time a.
• Final arrival time of B is

Start(B) + MaxDist(B) +
∑

s∈Stops(B)

w · (#PeopleLeavingAt(s) + #PeopleEnteringAt(s))

= Start(B) + MaxDist(B) +
∑

p∈PeopleRiding(B)

2w(1 + #ApproachedStopsBefore(Dest(p))).



B: Bustling Busride
Problem author: Niko Hastrich

Problem
Partition people queuing for a bus into contiguous segments minimizing the latest arrival time.
All people on the bus need to leave and possibly reenter at every stop (taking some time).

Solution

• Binary Search the answer a∗.

• For each tested a, put as many people into one bus B as possible while not arriving after time a.
• Final arrival time of B is

Start(B) + MaxDist(B) +
∑

s∈Stops(B)

w · (#PeopleLeavingAt(s) + #PeopleEnteringAt(s))

= Start(B) + MaxDist(B) +
∑

p∈PeopleRiding(B)

2w(1 + #ApproachedStopsBefore(Dest(p))).



B: Bustling Busride
Problem author: Niko Hastrich

Problem
Partition people queuing for a bus into contiguous segments minimizing the latest arrival time.
All people on the bus need to leave and possibly reenter at every stop (taking some time).

Solution

• Binary Search the answer a∗.
• For each tested a, put as many people into one bus B as possible while not arriving after time a.

• Final arrival time of B is

Start(B) + MaxDist(B) +
∑

s∈Stops(B)

w · (#PeopleLeavingAt(s) + #PeopleEnteringAt(s))

= Start(B) + MaxDist(B) +
∑

p∈PeopleRiding(B)

2w(1 + #ApproachedStopsBefore(Dest(p))).



B: Bustling Busride
Problem author: Niko Hastrich

Problem
Partition people queuing for a bus into contiguous segments minimizing the latest arrival time.
All people on the bus need to leave and possibly reenter at every stop (taking some time).

Solution

• Binary Search the answer a∗.
• For each tested a, put as many people into one bus B as possible while not arriving after time a.
• Final arrival time of B is

Start(B) + MaxDist(B) +
∑

s∈Stops(B)

w · (#PeopleLeavingAt(s) + #PeopleEnteringAt(s))

= Start(B) + MaxDist(B) +
∑

p∈PeopleRiding(B)

2w(1 + #ApproachedStopsBefore(Dest(p))).



B: Bustling Busride
Problem author: Niko Hastrich

Problem
Partition people queuing for a bus into contiguous segments minimizing the latest arrival time.
All people on the bus need to leave and possibly reenter at every stop (taking some time).

Solution

• Binary Search the answer a∗.
• For each tested a, put as many people into one bus B as possible while not arriving after time a.
• Final arrival time of B is

Start(B) + MaxDist(B) +
∑

s∈Stops(B)

w · (#PeopleLeavingAt(s) + #PeopleEnteringAt(s))

= Start(B) + MaxDist(B) +
∑

p∈PeopleRiding(B)

2w(1 + #ApproachedStopsBefore(Dest(p))).



Solution (cont.)

• Need to maintain
∑

p∈PeopleRiding(B) 2w(1 + #ApproachedStopsBefore(Dest(p))) for each new
person p on the bus

• Two cases:

• Dest(p) is already driven to:
Change in final arrival time = 2w(1 + #ApproachedStopsBefore(Dest(p)))

• Dest(p) is not already driven to:
Change in final arrival time
= 2w(1 + #ApproachedStopsBefore(Dest(p)) + #PeopleLeavingAfter(Dest(p)))

• Can be maintained in O(log n) with (basically) any tree data structure.
• Watch out to not TLE when many buses are needed.

• You need might need to rollback the updates to your data structure instead of building it fresh.

• Running time for testing one particular a: O(n log n)
• Running time for solving the whole problem: O(n log n log a∗)



Solution (cont.)

• Need to maintain
∑

p∈PeopleRiding(B) 2w(1 + #ApproachedStopsBefore(Dest(p))) for each new
person p on the bus

• Two cases:

• Dest(p) is already driven to:
Change in final arrival time = 2w(1 + #ApproachedStopsBefore(Dest(p)))

• Dest(p) is not already driven to:
Change in final arrival time
= 2w(1 + #ApproachedStopsBefore(Dest(p)) + #PeopleLeavingAfter(Dest(p)))

• Can be maintained in O(log n) with (basically) any tree data structure.
• Watch out to not TLE when many buses are needed.

• You need might need to rollback the updates to your data structure instead of building it fresh.

• Running time for testing one particular a: O(n log n)
• Running time for solving the whole problem: O(n log n log a∗)



Solution (cont.)

• Need to maintain
∑

p∈PeopleRiding(B) 2w(1 + #ApproachedStopsBefore(Dest(p))) for each new
person p on the bus

• Two cases:
• Dest(p) is already driven to:

Change in final arrival time = 2w(1 + #ApproachedStopsBefore(Dest(p)))
• Dest(p) is not already driven to:

Change in final arrival time
= 2w(1 + #ApproachedStopsBefore(Dest(p)) + #PeopleLeavingAfter(Dest(p)))

• Can be maintained in O(log n) with (basically) any tree data structure.
• Watch out to not TLE when many buses are needed.

• You need might need to rollback the updates to your data structure instead of building it fresh.

• Running time for testing one particular a: O(n log n)
• Running time for solving the whole problem: O(n log n log a∗)



Solution (cont.)

• Need to maintain
∑

p∈PeopleRiding(B) 2w(1 + #ApproachedStopsBefore(Dest(p))) for each new
person p on the bus

• Two cases:
• Dest(p) is already driven to:

Change in final arrival time = 2w(1 + #ApproachedStopsBefore(Dest(p)))

• Dest(p) is not already driven to:
Change in final arrival time
= 2w(1 + #ApproachedStopsBefore(Dest(p)) + #PeopleLeavingAfter(Dest(p)))

• Can be maintained in O(log n) with (basically) any tree data structure.
• Watch out to not TLE when many buses are needed.

• You need might need to rollback the updates to your data structure instead of building it fresh.

• Running time for testing one particular a: O(n log n)
• Running time for solving the whole problem: O(n log n log a∗)



Solution (cont.)

• Need to maintain
∑

p∈PeopleRiding(B) 2w(1 + #ApproachedStopsBefore(Dest(p))) for each new
person p on the bus

• Two cases:
• Dest(p) is already driven to:

Change in final arrival time = 2w(1 + #ApproachedStopsBefore(Dest(p)))
• Dest(p) is not already driven to:

Change in final arrival time
= 2w(1 + #ApproachedStopsBefore(Dest(p)) + #PeopleLeavingAfter(Dest(p)))

• Can be maintained in O(log n) with (basically) any tree data structure.
• Watch out to not TLE when many buses are needed.

• You need might need to rollback the updates to your data structure instead of building it fresh.

• Running time for testing one particular a: O(n log n)
• Running time for solving the whole problem: O(n log n log a∗)



Solution (cont.)

• Need to maintain
∑

p∈PeopleRiding(B) 2w(1 + #ApproachedStopsBefore(Dest(p))) for each new
person p on the bus

• Two cases:
• Dest(p) is already driven to:

Change in final arrival time = 2w(1 + #ApproachedStopsBefore(Dest(p)))
• Dest(p) is not already driven to:

Change in final arrival time
= 2w(1 + #ApproachedStopsBefore(Dest(p)) + #PeopleLeavingAfter(Dest(p)))

• Can be maintained in O(log n) with (basically) any tree data structure.
• Watch out to not TLE when many buses are needed.

• You need might need to rollback the updates to your data structure instead of building it fresh.

• Running time for testing one particular a: O(n log n)
• Running time for solving the whole problem: O(n log n log a∗)



Solution (cont.)

• Need to maintain
∑

p∈PeopleRiding(B) 2w(1 + #ApproachedStopsBefore(Dest(p))) for each new
person p on the bus

• Two cases:
• Dest(p) is already driven to:

Change in final arrival time = 2w(1 + #ApproachedStopsBefore(Dest(p)))
• Dest(p) is not already driven to:

Change in final arrival time
= 2w(1 + #ApproachedStopsBefore(Dest(p)) + #PeopleLeavingAfter(Dest(p)))

• Can be maintained in O(log n) with (basically) any tree data structure.

• Watch out to not TLE when many buses are needed.

• You need might need to rollback the updates to your data structure instead of building it fresh.

• Running time for testing one particular a: O(n log n)
• Running time for solving the whole problem: O(n log n log a∗)



Solution (cont.)

• Need to maintain
∑

p∈PeopleRiding(B) 2w(1 + #ApproachedStopsBefore(Dest(p))) for each new
person p on the bus

• Two cases:
• Dest(p) is already driven to:

Change in final arrival time = 2w(1 + #ApproachedStopsBefore(Dest(p)))
• Dest(p) is not already driven to:

Change in final arrival time
= 2w(1 + #ApproachedStopsBefore(Dest(p)) + #PeopleLeavingAfter(Dest(p)))

• Can be maintained in O(log n) with (basically) any tree data structure.
• Watch out to not TLE when many buses are needed.

• You need might need to rollback the updates to your data structure instead of building it fresh.

• Running time for testing one particular a: O(n log n)
• Running time for solving the whole problem: O(n log n log a∗)



Solution (cont.)

• Need to maintain
∑

p∈PeopleRiding(B) 2w(1 + #ApproachedStopsBefore(Dest(p))) for each new
person p on the bus

• Two cases:
• Dest(p) is already driven to:

Change in final arrival time = 2w(1 + #ApproachedStopsBefore(Dest(p)))
• Dest(p) is not already driven to:

Change in final arrival time
= 2w(1 + #ApproachedStopsBefore(Dest(p)) + #PeopleLeavingAfter(Dest(p)))

• Can be maintained in O(log n) with (basically) any tree data structure.
• Watch out to not TLE when many buses are needed.

• You need might need to rollback the updates to your data structure instead of building it fresh.

• Running time for testing one particular a: O(n log n)
• Running time for solving the whole problem: O(n log n log a∗)



Solution (cont.)

• Need to maintain
∑

p∈PeopleRiding(B) 2w(1 + #ApproachedStopsBefore(Dest(p))) for each new
person p on the bus

• Two cases:
• Dest(p) is already driven to:

Change in final arrival time = 2w(1 + #ApproachedStopsBefore(Dest(p)))
• Dest(p) is not already driven to:

Change in final arrival time
= 2w(1 + #ApproachedStopsBefore(Dest(p)) + #PeopleLeavingAfter(Dest(p)))

• Can be maintained in O(log n) with (basically) any tree data structure.
• Watch out to not TLE when many buses are needed.

• You need might need to rollback the updates to your data structure instead of building it fresh.

• Running time for testing one particular a: O(n log n)

• Running time for solving the whole problem: O(n log n log a∗)



Solution (cont.)

• Need to maintain
∑

p∈PeopleRiding(B) 2w(1 + #ApproachedStopsBefore(Dest(p))) for each new
person p on the bus

• Two cases:
• Dest(p) is already driven to:

Change in final arrival time = 2w(1 + #ApproachedStopsBefore(Dest(p)))
• Dest(p) is not already driven to:

Change in final arrival time
= 2w(1 + #ApproachedStopsBefore(Dest(p)) + #PeopleLeavingAfter(Dest(p)))

• Can be maintained in O(log n) with (basically) any tree data structure.
• Watch out to not TLE when many buses are needed.

• You need might need to rollback the updates to your data structure instead of building it fresh.

• Running time for testing one particular a: O(n log n)
• Running time for solving the whole problem: O(n log n log a∗)



C: Congklak
Problem author: Lucas Schwebler

Problem
There is a game board with n holes, initially hole i contains ai stones. Perform the following ”game“
exactly t times: Drop one stone into hole 1 and simulate according to the rules of Congklak. How
many stones are in each hole after playing t of those games?

a
b

a

a

b
a

a a



C: Congklak
Problem author: Lucas Schwebler

Observation

0 0 0 0 0 0 0

1 1 0 0 0 0 0

2 0 1 1 0 0 0

3 1 1 1 0 0 0

4 0 2 0 1 1 0

• Look at the process with ai = 0.

• Odd indices are counting upwards in binary! (least
significant bit is at hole 1)

• Even indices contain the number of overflows of the
digits.



C: Congklak
Problem author: Lucas Schwebler

Observation

0 0 0 0 0 0 0

1 1 0 0 0 0 0

2 0 1 1 0 0 0

3 1 1 1 0 0 0

4 0 2 0 1 1 0

• Look at the process with ai = 0.
• Odd indices are counting upwards in binary! (least

significant bit is at hole 1)

• Even indices contain the number of overflows of the
digits.



C: Congklak
Problem author: Lucas Schwebler

Observation

0 0 0 0 0 0 0

1 1 0 0 0 0 0

2 0 1 1 0 0 0

3 1 1 1 0 0 0

4 0 2 0 1 1 0

• Look at the process with ai = 0.
• Odd indices are counting upwards in binary! (least

significant bit is at hole 1)
• Even indices contain the number of overflows of the

digits.



C: Congklak
Problem author: Lucas Schwebler

Solution 1

• Suppose that holes 1, 3, . . . , 2k − 1 are empty.
• Then, the next 2k − 1 games are easy to simulate (binary counting).

• After that, simulate one game naively in O(n).
• Then, holes 1, 3, . . . , 2k + 1 are empty; repeat as above with larger k.
• If k reaches log2(t), we can simulate all remaining games with binary counting.
• Thus, we only need to simulate O(log(t)) games naively.



C: Congklak
Problem author: Lucas Schwebler

Solution 1

• Suppose that holes 1, 3, . . . , 2k − 1 are empty.
• Then, the next 2k − 1 games are easy to simulate (binary counting).
• After that, simulate one game naively in O(n).
• Then, holes 1, 3, . . . , 2k + 1 are empty; repeat as above with larger k.

• If k reaches log2(t), we can simulate all remaining games with binary counting.
• Thus, we only need to simulate O(log(t)) games naively.



C: Congklak
Problem author: Lucas Schwebler

Solution 1

• Suppose that holes 1, 3, . . . , 2k − 1 are empty.
• Then, the next 2k − 1 games are easy to simulate (binary counting).
• After that, simulate one game naively in O(n).
• Then, holes 1, 3, . . . , 2k + 1 are empty; repeat as above with larger k.
• If k reaches log2(t), we can simulate all remaining games with binary counting.
• Thus, we only need to simulate O(log(t)) games naively.



C: Congklak
Problem author: Lucas Schwebler

Solution 2 (Easier to implement!)

• If hole 1 is not empty, simulate one game naively.
• So suppose that hole 1 is empty.

• Suppose that r games are remaining.
• Hole 1 will contain r mod 2 stones in the end.
• Hole 2 will contain

⌊ r
2
⌋

additional stones.
• Repeat the same process starting from hole 3 with

⌊ r
2
⌋

remaining games.
• Time complexity: O(n log(t))



C: Congklak
Problem author: Lucas Schwebler

Solution 2 (Easier to implement!)

• If hole 1 is not empty, simulate one game naively.
• So suppose that hole 1 is empty.
• Suppose that r games are remaining.
• Hole 1 will contain r mod 2 stones in the end.
• Hole 2 will contain

⌊ r
2
⌋

additional stones.
• Repeat the same process starting from hole 3 with

⌊ r
2
⌋

remaining games.
• Time complexity: O(n log(t))



C: Congklak
Problem author: Lucas Schwebler

Solution 2 (Easier to implement!)

• If hole 1 is not empty, simulate one game naively.
• So suppose that hole 1 is empty.
• Suppose that r games are remaining.
• Hole 1 will contain r mod 2 stones in the end.
• Hole 2 will contain

⌊ r
2
⌋

additional stones.
• Repeat the same process starting from hole 3 with

⌊ r
2
⌋

remaining games.
• Time complexity: O(n log(t))

r = 8 2 0 0 0 0 0



C: Congklak
Problem author: Lucas Schwebler

Solution 2 (Easier to implement!)

• If hole 1 is not empty, simulate one game naively.
• So suppose that hole 1 is empty.
• Suppose that r games are remaining.
• Hole 1 will contain r mod 2 stones in the end.
• Hole 2 will contain

⌊ r
2
⌋

additional stones.
• Repeat the same process starting from hole 3 with

⌊ r
2
⌋

remaining games.
• Time complexity: O(n log(t))

r = 7 0 1 1 1 0 0



C: Congklak
Problem author: Lucas Schwebler

Solution 2 (Easier to implement!)

• If hole 1 is not empty, simulate one game naively.
• So suppose that hole 1 is empty.
• Suppose that r games are remaining.
• Hole 1 will contain r mod 2 stones in the end.
• Hole 2 will contain

⌊ r
2
⌋

additional stones.
• Repeat the same process starting from hole 3 with

⌊ r
2
⌋

remaining games.
• Time complexity: O(n log(t))

r = 3 1 4 1 1 0 0



C: Congklak
Problem author: Lucas Schwebler

Solution 2 (Easier to implement!)

• If hole 1 is not empty, simulate one game naively.
• So suppose that hole 1 is empty.
• Suppose that r games are remaining.
• Hole 1 will contain r mod 2 stones in the end.
• Hole 2 will contain

⌊ r
2
⌋

additional stones.
• Repeat the same process starting from hole 3 with

⌊ r
2
⌋

remaining games.
• Time complexity: O(n log(t))

r = 2 1 4 0 2 1 0



C: Congklak
Problem author: Lucas Schwebler

Solution 2 (Easier to implement!)

• If hole 1 is not empty, simulate one game naively.
• So suppose that hole 1 is empty.
• Suppose that r games are remaining.
• Hole 1 will contain r mod 2 stones in the end.
• Hole 2 will contain

⌊ r
2
⌋

additional stones.
• Repeat the same process starting from hole 3 with

⌊ r
2
⌋

remaining games.
• Time complexity: O(n log(t))

r = 1 1 4 0 3 1 0



C: Congklak
Problem author: Lucas Schwebler

Solution 2 (Easier to implement!)

• If hole 1 is not empty, simulate one game naively.
• So suppose that hole 1 is empty.
• Suppose that r games are remaining.
• Hole 1 will contain r mod 2 stones in the end.
• Hole 2 will contain

⌊ r
2
⌋

additional stones.
• Repeat the same process starting from hole 3 with

⌊ r
2
⌋

remaining games.
• Time complexity: O(n log(t))

r = 0 1 4 0 3 0 1



D: Demand for Cycling
Problem author: Jannik Olbrich

Problem
Given an axis-aligned polygon, find an enclosing axis-aligned polygon with minimum circumference

Solution

• Insight: An optimal solution has no two consecutive convex vertices
=⇒ Any optimal solution is rectilinear convex

• What’s the circumference of such a polygon?

2(xmax − xmin) + 2(ymax − ymin)
• This is the same as the rectangle with corners ⟨xmin, ymin⟩ and ⟨xmax , ymax ⟩

• Find xmin, xmax , ymin and ymax

• Time complexity: O(n)



D: Demand for Cycling
Problem author: Jannik Olbrich

Problem
Given an axis-aligned polygon, find an enclosing axis-aligned polygon with minimum circumference

Solution

• Insight: An optimal solution has no two consecutive convex vertices
=⇒ Any optimal solution is rectilinear convex

• What’s the circumference of such a polygon? 2(xmax − xmin) + 2(ymax − ymin)
• This is the same as the rectangle with corners ⟨xmin, ymin⟩ and ⟨xmax , ymax ⟩

• Find xmin, xmax , ymin and ymax

• Time complexity: O(n)



E: Engineering Excellence
Problem author: Yidi Zang

Problem

• Given a convex polygon with internal angles ≥ 90◦.
• Move one point to maximize the perimeter.
• The polygon must stay convex (angles ≤ 180◦) and all internal angles ≥ 90◦.



E: Engineering Excellence
Problem author: Yidi Zang

Problem

• Given a convex polygon with internal angles ≥ 90◦.
• Move one point to maximize the perimeter.
• The polygon must stay convex (angles ≤ 180◦) and all internal angles ≥ 90◦.

Solution

• Try to move every point individually.

• The angle ∠BCD is in [90◦, 180◦] if C stays
within the Thales semicircle.

• Ideally, we move C to the middle top of the
Thales semicircle.

• This maximizes the perimeter.

1 2 3 4 5 6 7

1

2

3

4

5

A

B

C

D

E



E: Engineering Excellence
Problem author: Yidi Zang

Problem

• Given a convex polygon with internal angles ≥ 90◦.
• Move one point to maximize the perimeter.
• The polygon must stay convex (angles ≤ 180◦) and all internal angles ≥ 90◦.

Solution

• Try to move every point individually.
• The angle ∠BCD is in [90◦, 180◦] if C stays

within the Thales semicircle.

• Ideally, we move C to the middle top of the
Thales semicircle.

• This maximizes the perimeter.

1 2 3 4 5 6 7

1

2

3

4

5

A

B

C

D

E



E: Engineering Excellence
Problem author: Yidi Zang

Problem

• Given a convex polygon with internal angles ≥ 90◦.
• Move one point to maximize the perimeter.
• The polygon must stay convex (angles ≤ 180◦) and all internal angles ≥ 90◦.

Solution

• Try to move every point individually.
• The angle ∠BCD is in [90◦, 180◦] if C stays

within the Thales semicircle.
• Ideally, we move C to the middle top of the

Thales semicircle.
• This maximizes the perimeter.

1 2 3 4 5 6 7

1

2

3

4

5

A

B

C

D

E



Solution

• Ideally, we move C to the middle top of the Thales semicircle.
• This maximizes the perimeter.
• However, this is not always possible because of the angles ∠ABC and ∠CDE .

1 2 3 4 5 6 7

1

2

3

4

5

A

B

C

D

E

−1 1 2 3 4 5 6 7

1

2

3

4

5

A

B

C

D

E



Solution

• The angle ∠CDE is ≤ 180◦, if C stays in the green halfplane.

• By intuition or triangle inequality, the intersection point between halfplane line and Thales
semicircle is optimal (or middle top of Thales circle).

• There is also a (pink) halfplane for ∠CDE ≥ 90◦ (and ≤ 270◦).
• One of the two halfplanes completely contains the semicircle, ignore that one.

1 2 3 4 5 6 7

1

2

3

4

5

B

C

D

E



Solution

• The angle ∠CDE is ≤ 180◦, if C stays in the green halfplane.
• By intuition or triangle inequality, the intersection point between halfplane line and Thales

semicircle is optimal (or middle top of Thales circle).

• There is also a (pink) halfplane for ∠CDE ≥ 90◦ (and ≤ 270◦).
• One of the two halfplanes completely contains the semicircle, ignore that one.

1 2 3 4 5 6 7

1

2

3

4

5

B

C

D

E



Solution

• The angle ∠CDE is ≤ 180◦, if C stays in the green halfplane.
• By intuition or triangle inequality, the intersection point between halfplane line and Thales

semicircle is optimal (or middle top of Thales circle).
• There is also a (pink) halfplane for ∠CDE ≥ 90◦ (and ≤ 270◦).

• One of the two halfplanes completely contains the semicircle, ignore that one.

1 2 3 4 5 6 7

1

2

3

4

5

B

C

D

E

1 2 3 4 5 6 7

1

2

3

4

5

B

C

D

E



Solution

• The angle ∠CDE is ≤ 180◦, if C stays in the green halfplane.
• By intuition or triangle inequality, the intersection point between halfplane line and Thales

semicircle is optimal (or middle top of Thales circle).
• There is also a (pink) halfplane for ∠CDE ≥ 90◦ (and ≤ 270◦).
• One of the two halfplanes completely contains the semicircle, ignore that one.

1 2 3 4 5 6 7

1

2

3

4

5

B

C

D

E

1 2 3 4 5 6 7

1

2

3

4

5

B

C

D

E



Solution

• Both angles ∠ABC and ∠CDE have one relevant halfplane.
• The halfplane lines might intersect in the semicircle.

• Here, the intersection point of the lines is optimal.

1 2 3 4 5 6 7

1

2

3

4

5

A

B
C

D

E



Solution

• Both angles ∠ABC and ∠CDE have one relevant halfplane.
• The halfplane lines might intersect in the semicircle.
• Here, the intersection point of the lines is optimal.

1 2 3 4 5 6 7

1

2

3

4

5

A

B
C

D

E



Solution

• In total, there are four possible optimal points:

1. Middle top of the Thales semicircle.
2. Intersection ∠ABC halfplane and Thales semicircle.
3. Intersection ∠CDE halfplane and Thales semicircle.
4. Intersection ∠ABC and ∠CDE halfplane lines.

• Try all of these points and check whether they are valid.
• Take care of precision issues: Use long double and large ε (e.g. ε = 10−7).
• Runtime: O(n).



Solution

• In total, there are four possible optimal points:

1. Middle top of the Thales semicircle.
2. Intersection ∠ABC halfplane and Thales semicircle.
3. Intersection ∠CDE halfplane and Thales semicircle.
4. Intersection ∠ABC and ∠CDE halfplane lines.

• Try all of these points and check whether they are valid.
• Take care of precision issues: Use long double and large ε (e.g. ε = 10−7).
• Runtime: O(n).



Solution

• In total, there are four possible optimal points:

1. Middle top of the Thales semicircle.
2. Intersection ∠ABC halfplane and Thales semicircle.
3. Intersection ∠CDE halfplane and Thales semicircle.
4. Intersection ∠ABC and ∠CDE halfplane lines.

• Try all of these points and check whether they are valid.

• Take care of precision issues: Use long double and large ε (e.g. ε = 10−7).
• Runtime: O(n).



Solution

• In total, there are four possible optimal points:

1. Middle top of the Thales semicircle.
2. Intersection ∠ABC halfplane and Thales semicircle.
3. Intersection ∠CDE halfplane and Thales semicircle.
4. Intersection ∠ABC and ∠CDE halfplane lines.

• Try all of these points and check whether they are valid.
• Take care of precision issues: Use long double and large ε (e.g. ε = 10−7).
• Runtime: O(n).



F: Fair and Square
Problem author: Paul Wild

Problem
You are given a region consisting of some cells in a rectangular grid. Find the longest possible length
such that the region can be divided into squares of that side length.



F: Fair and Square
Problem author: Paul Wild

Solution

• Testing whether a given length is possible can be done in O(h · w):
• Scan over the grid from top left to bottom right
• Whenever an unmarked cell is encountered, it must be the top left corner of a square
• Check if a square can be placed here and mark all cells belonging to it, then continue scanning
• In the end, check if all cells of the region have been marked
• The time does not depend on the size of the square!

• Testing all side lengths from 1 to min(h, w) is too slow for the given bounds
• Key Improvement: Only test side lengths k such that k2 divides n, the number of cells

• The worst case in the given bounds is n = 2 822 400 = 28 · 32 · 52 · 72, which has 40 square divisors

• With this improvement, the solution is fast enough



G: Generating Cool Passwords Company
Problem author: Paul Wild

Problem
Generate a list of n passwords (1 ≤ n ≤ 1000).

1. Passwords must contain at least one each of a-z, A-Z, 0-9 and a special symbol (e.g. ! or #)

2. Passwords must have pairwise edit distance at least 2

3. Passwords must be between 8 and 12 in length

Solution

• Here’s one of the many approaches that work:
000GCPC!x000, 001GCPC!x001, 002GCPC!x002, . . . , 999GCPC!x999

• The common part GCPC!x is used to satisfy rules 1 and 3
• The two counters are used to satisfy rule 2

• Other approaches include using randomization, permutations, or the digits of π



G: Generating Cool Passwords Company
Problem author: Paul Wild

Problem
Generate a list of n passwords (1 ≤ n ≤ 1000).

1. Passwords must contain at least one each of a-z, A-Z, 0-9 and a special symbol (e.g. ! or #)

2. Passwords must have pairwise edit distance at least 2

3. Passwords must be between 8 and 12 in length

Solution

• Here’s one of the many approaches that work:
000GCPC!x000, 001GCPC!x001, 002GCPC!x002, . . . , 999GCPC!x999

• The common part GCPC!x is used to satisfy rules 1 and 3
• The two counters are used to satisfy rule 2

• Other approaches include using randomization, permutations, or the digits of π



H: Happy Hookup
Problem author: Andreas Grigorjew

Problem

• We are given a directed graph with n vertices and m edges, and two different vertices u and v .
• Find a vertex c, such that there is a path from u to c and a path from v to c. Or return that no

such vertex exists.

Solution

• Implement a depth first search or a breadth first search.
• Call two searches: one starting from u, one starting from v .
• Maintain a boolean array for both searches, indicating for every vertex whether it has been

reached by the search.
• Output any vertex for which the entry in both arrays is true, or output “no” if no such vertex

exists.
• Runtime: O(n + m).



H: Happy Hookup
Problem author: Andreas Grigorjew

Problem

• We are given a directed graph with n vertices and m edges, and two different vertices u and v .
• Find a vertex c, such that there is a path from u to c and a path from v to c. Or return that no

such vertex exists.

Solution

• Implement a depth first search or a breadth first search.
• Call two searches: one starting from u, one starting from v .

• Maintain a boolean array for both searches, indicating for every vertex whether it has been
reached by the search.

• Output any vertex for which the entry in both arrays is true, or output “no” if no such vertex
exists.

• Runtime: O(n + m).



H: Happy Hookup
Problem author: Andreas Grigorjew

Problem

• We are given a directed graph with n vertices and m edges, and two different vertices u and v .
• Find a vertex c, such that there is a path from u to c and a path from v to c. Or return that no

such vertex exists.

Solution

• Implement a depth first search or a breadth first search.
• Call two searches: one starting from u, one starting from v .
• Maintain a boolean array for both searches, indicating for every vertex whether it has been

reached by the search.
• Output any vertex for which the entry in both arrays is true, or output “no” if no such vertex

exists.
• Runtime: O(n + m).



I: Island Urbanism
Problem author: Felicia Lucke, Jannik Olbrich, Paul Wild

Problem
Given a graph G consisting of a large cycle where some edges are replaced by an arbitrary connected
graph (a village). Further, given terminal vertices in G such that every village contains at most 7
terminals. Find a Steiner Tree in G , that is, a subtree of G connecting all terminals.

1

2

3

4

5

6

7

8

3

5

1

2

2

3

2

2

3

2



I: Island Urbanism
Problem author: Felicia Lucke, Jannik Olbrich, Paul Wild

Problem
Given a graph G consisting of a large cycle where some edges are replaced by an arbitrary connected
graph (a village). Further, given terminal vertices in G such that every village contains at most 7
terminals. Find a Steiner Tree in G , that is, a subtree of G connecting all terminals.

Solution
How do we solve this for few terminals?

• Dynamic Programming: Let D(S, i) be the weight of the smallest tree connecting the terminals
in S and vertex i :

D(∅, i) = 0 ∀i
D(S, i) ≤ D(S \ {i}, i) if i is a terminal
D(S, i) ≤ D(S, j) + w if there is an edge (i , j) with weight w
D(S, i) ≤ D(A, i) + D(S \ A, i) ∀A ⊂ S

• Time Complexity: O(n · 3k + 2k · m · log n) for n vertices, m edges, and k terminals



I: Island Urbanism
Problem author: Felicia Lucke, Jannik Olbrich, Paul Wild

Problem
Given a graph G consisting of a large cycle where some edges are replaced by an arbitrary connected
graph (a village). Further, given terminal vertices in G such that every village contains at most 7
terminals. Find a Steiner Tree in G , that is, a subtree of G connecting all terminals.

Solution

• The solution is a tree
=⇒ We must cut the cycle somewhere

• Two cases:
• Cut inside a village (s.t. the “leftmost” and “rightmost” vertices are disconnected within the village)
• Cut between two villages (“leftmost” and “rightmost” vertices are connected within the villages)

• Treat “leftmost” and “rightmost” vertices of villages as terminals
=⇒ cases can be computed with DP

• Just try cutting between any adjacent villages, and within each village!
• Take care with villages without terminals
• Time Complexity: O(n · 37 + 27 · m · log n)



J: Jumbled Packets
Problem author: Yidi Zang

Problem

• This is a multi pass problem.
• You are given a binary string s of length n (1 ≤ n ≤ 105).
• Encode it into a ternary string of length n.
• After this string is cyclically rotated by some amount, restore the original string s.

Encode

• If the string s consists of only ‘0’, do nothing.
• Otherwise, find the first ‘1’.
• Replace everything up to that ‘1’ with ‘2’.
• For example, replace “00001011” with “22222011”.



J: Jumbled Packets
Problem author: Yidi Zang

Problem

• This is a multi pass problem.
• You are given a binary string s of length n (1 ≤ n ≤ 105).
• Encode it into a ternary string of length n.
• After this string is cyclically rotated by some amount, restore the original string s.

Encode

• If the string s consists of only ‘0’, do nothing.

• Otherwise, find the first ‘1’.
• Replace everything up to that ‘1’ with ‘2’.
• For example, replace “00001011” with “22222011”.



J: Jumbled Packets
Problem author: Yidi Zang

Problem

• This is a multi pass problem.
• You are given a binary string s of length n (1 ≤ n ≤ 105).
• Encode it into a ternary string of length n.
• After this string is cyclically rotated by some amount, restore the original string s.

Encode

• If the string s consists of only ‘0’, do nothing.
• Otherwise, find the first ‘1’.
• Replace everything up to that ‘1’ with ‘2’.
• For example, replace “00001011” with “22222011”.



J: Jumbled Packets
Problem author: Yidi Zang

Encode

• If the string s consists of only ‘0’, do nothing.
• Otherwise, find the first ‘1’.
• Replace everything up to that ‘1’ with ‘2’.
• For example, replace “00001011” with “22222011”.

Decode

• If the received ternary string consists of only ‘0’, this is already decoded.

• Otherwise, find the substring of ‘2’s.
• Careful, this might wrap over the end, e.g. “22011222”.

• Rotate this substring to the beginning, “22011222” → “22222011”.
• Replace the last ‘2’ with ‘1’, all other ‘2’s with ‘0’, “22222011” → “00001011”.
• Encoding and decoding both take O(n).



J: Jumbled Packets
Problem author: Yidi Zang

Encode

• If the string s consists of only ‘0’, do nothing.
• Otherwise, find the first ‘1’.
• Replace everything up to that ‘1’ with ‘2’.
• For example, replace “00001011” with “22222011”.

Decode

• If the received ternary string consists of only ‘0’, this is already decoded.
• Otherwise, find the substring of ‘2’s.

• Careful, this might wrap over the end, e.g. “22011222”.

• Rotate this substring to the beginning, “22011222” → “22222011”.
• Replace the last ‘2’ with ‘1’, all other ‘2’s with ‘0’, “22222011” → “00001011”.
• Encoding and decoding both take O(n).



J: Jumbled Packets
Problem author: Yidi Zang

Encode

• If the string s consists of only ‘0’, do nothing.
• Otherwise, find the first ‘1’.
• Replace everything up to that ‘1’ with ‘2’.
• For example, replace “00001011” with “22222011”.

Decode

• If the received ternary string consists of only ‘0’, this is already decoded.
• Otherwise, find the substring of ‘2’s.

• Careful, this might wrap over the end, e.g. “22011222”.

• Rotate this substring to the beginning, “22011222” → “22222011”.

• Replace the last ‘2’ with ‘1’, all other ‘2’s with ‘0’, “22222011” → “00001011”.
• Encoding and decoding both take O(n).



J: Jumbled Packets
Problem author: Yidi Zang

Encode

• If the string s consists of only ‘0’, do nothing.
• Otherwise, find the first ‘1’.
• Replace everything up to that ‘1’ with ‘2’.
• For example, replace “00001011” with “22222011”.

Decode

• If the received ternary string consists of only ‘0’, this is already decoded.
• Otherwise, find the substring of ‘2’s.

• Careful, this might wrap over the end, e.g. “22011222”.

• Rotate this substring to the beginning, “22011222” → “22222011”.
• Replace the last ‘2’ with ‘1’, all other ‘2’s with ‘0’, “22222011” → “00001011”.

• Encoding and decoding both take O(n).



J: Jumbled Packets
Problem author: Yidi Zang

Encode

• If the string s consists of only ‘0’, do nothing.
• Otherwise, find the first ‘1’.
• Replace everything up to that ‘1’ with ‘2’.
• For example, replace “00001011” with “22222011”.

Decode

• If the received ternary string consists of only ‘0’, this is already decoded.
• Otherwise, find the substring of ‘2’s.

• Careful, this might wrap over the end, e.g. “22011222”.

• Rotate this substring to the beginning, “22011222” → “22222011”.
• Replace the last ‘2’ with ‘1’, all other ‘2’s with ‘0’, “22222011” → “00001011”.
• Encoding and decoding both take O(n).



K: Karlsruhe Skyline
Problem author: Paul Wild

Problem
Given integers n, a and b, find a permutation of building of heights 1 to n such that a buildings can
be seen from the left and b buildings can be seen from the right, or say that none exists.



K: Karlsruhe Skyline
Problem author: Paul Wild

Solution

• There are two types of cases where no solution exists:
• Only building n can be seen from both sides, so a + b > n + 1 is impossible
• Building n must always be next to a 1 clue, so we cannot have a = b = 1

• The following setup can be used in the general case:

a− 1 b− 1

• If a = 1 or b = 1 you may need to reverse the middle part.



L: Labour Laws
Problem author: Yvonne Kothmeier

Problem
Given time tw . Find the minimum time 0 ≤ tb, such that

• tw − tb ≤ 60 ∗ 6 or
• tw − tb ≤ 60 ∗ 9 ∧ tb ≥ 30 or
• tw − tb ≤ 60 ∗ 10 ∧ tb ≥ 45



L: Labour Laws
Problem author: Yvonne Kothmeier

Problem
Given time tw . Find the minimum time 0 ≤ tb, such that

• tw − tb ≤ 60 ∗ 6 or
• tw − tb ≤ 60 ∗ 9 ∧ tb ≥ 30 or
• tw − tb ≤ 60 ∗ 10 ∧ tb ≥ 45

Solution 1

• Case matching
• if tw ≤ 60 ∗ 6 ⇒ 0
• if 60 ∗ 6 + 30 < tw ≤ 60 ∗ 9 + 30 ⇒ 30
• if 60 ∗ 9 + 45 < tw ≤ 60 ∗ 10 + 45 ⇒ 45
• if 60 ∗ 10 + 45 < tw ⇒ Output difference

• Fill gaps between cases by adding difference to lower bracket to solution



L: Labour Laws
Problem author: Yvonne Kothmeier

Problem
Given time tw . Find the minimum time 0 ≤ tb, such that

• tw − tb ≤ 60 ∗ 6 or
• tw − tb ≤ 60 ∗ 9 ∧ tb ≥ 30 or
• tw − tb ≤ 60 ∗ 10 ∧ tb ≥ 45

Solution 1

• Case matching
• if tw ≤ 60 ∗ 6 ⇒ 0
• if 60 ∗ 6 + 30 < tw ≤ 60 ∗ 9 + 30 ⇒ 30
• if 60 ∗ 9 + 45 < tw ≤ 60 ∗ 10 + 45 ⇒ 45
• if 60 ∗ 10 + 45 < tw ⇒ Output difference
• Fill gaps between cases by adding difference to lower bracket to solution



L: Labour Laws
Problem author: Yvonne Kothmeier

Problem
Given time tw . Find the minimum time 0 ≤ tb, such that

• tw − tb ≤ 60 ∗ 6 or
• tw − tb ≤ 60 ∗ 9 ∧ tb ≥ 30 or
• tw − tb ≤ 60 ∗ 10 ∧ tb ≥ 45

Solution 2

• Loop over tb from 0 to tw

• Check if solution is valid
• Output first valid solution



M: Mex Hex
Problem author: Niklas Mohrin

Problem
Given an array p and an integer d , cover length-d intervals of p so that the mex of the uncovered
numbers is minimized. After a covered interval, the next d numbers cannot be covered.

1 0 0 2 0 1 218 1 0 6 4 2

Observations

• Let p′ be the set of uncovered numbers.
• How to achieve mex(p′) = 0 (the best possible)?

⇒ Cover all i with pi = 0.

• In general, covering all i with pi = x implies that mex(p′) ≤ x .



M: Mex Hex
Problem author: Niklas Mohrin

Problem
Given an array p and an integer d , cover length-d intervals of p so that the mex of the uncovered
numbers is minimized. After a covered interval, the next d numbers cannot be covered.

1 0 0 2 0 1 218 1 0 6 4 2

Observations

• Let p′ be the set of uncovered numbers.
• How to achieve mex(p′) = 0 (the best possible)?

⇒ Cover all i with pi = 0.

• In general, covering all i with pi = x implies that mex(p′) ≤ x .



M: Mex Hex
Problem author: Niklas Mohrin

Problem
Given an array p and an integer d , cover length-d intervals of p so that the mex of the uncovered
numbers is minimized. After a covered interval, the next d numbers cannot be covered.

1 0 0 2 0 1 218 1 0 6 4 2

Observations

• Let p′ be the set of uncovered numbers.
• How to achieve mex(p′) = 0 (the best possible)? ⇒ Cover all i with pi = 0.

• In general, covering all i with pi = x implies that mex(p′) ≤ x .



M: Mex Hex
Problem author: Niklas Mohrin

Problem
Given an array p and an integer d , cover length-d intervals of p so that the mex of the uncovered
numbers is minimized. After a covered interval, the next d numbers cannot be covered.

1 0 0 2 0 1 218 1 0 6 4 2

Observations

• Let p′ be the set of uncovered numbers.
• How to achieve mex(p′) = 0 (the best possible)? ⇒ Cover all i with pi = 0.
• In general, covering all i with pi = x implies that mex(p′) ≤ x .



M: Mex Hex
Problem author: Niklas Mohrin

New problem: Check if a set of indices I = {i | pi = x} can be covered.

Greedy algorithm

• Place a covering interval [i , i + d) to start on the first uncovered i ∈ I.

• Move this interval to the left to start on the smallest index j so that
• it still covers the same relevant indices, that is, [i , i + d) ∩ I = [j, j + d) ∩ I, and
• it is at least d far away from the previous interval.

• If [j + d , j + 2d) ∩ I ̸= ∅, then I cannot be covered. Otherwise repeat until all of I is covered.

Correctness can be proven via greedy stays ahead argument. Time complexity: O(|I|).



M: Mex Hex
Problem author: Niklas Mohrin

New problem: Check if a set of indices I = {i | pi = x} can be covered.

Greedy algorithm

• Place a covering interval [i , i + d) to start on the first uncovered i ∈ I.

• Move this interval to the left to start on the smallest index j so that
• it still covers the same relevant indices, that is, [i , i + d) ∩ I = [j, j + d) ∩ I, and
• it is at least d far away from the previous interval.

• If [j + d , j + 2d) ∩ I ̸= ∅, then I cannot be covered. Otherwise repeat until all of I is covered.

Correctness can be proven via greedy stays ahead argument. Time complexity: O(|I|).



M: Mex Hex
Problem author: Niklas Mohrin

New problem: Check if a set of indices I = {i | pi = x} can be covered.

Greedy algorithm

• Place a covering interval [i , i + d) to start on the first uncovered i ∈ I.
• Move this interval to the left to start on the smallest index j so that

• it still covers the same relevant indices, that is, [i , i + d) ∩ I = [j, j + d) ∩ I, and
• it is at least d far away from the previous interval.

• If [j + d , j + 2d) ∩ I ̸= ∅, then I cannot be covered. Otherwise repeat until all of I is covered.

Correctness can be proven via greedy stays ahead argument. Time complexity: O(|I|).



M: Mex Hex
Problem author: Niklas Mohrin

New problem: Check if a set of indices I = {i | pi = x} can be covered.

Greedy algorithm

• Place a covering interval [i , i + d) to start on the first uncovered i ∈ I.
• Move this interval to the left to start on the smallest index j so that

• it still covers the same relevant indices, that is, [i , i + d) ∩ I = [j, j + d) ∩ I, and
• it is at least d far away from the previous interval.

• If [j + d , j + 2d) ∩ I ̸= ∅, then I cannot be covered. Otherwise repeat until all of I is covered.

Correctness can be proven via greedy stays ahead argument. Time complexity: O(|I|).



M: Mex Hex
Problem author: Niklas Mohrin

New problem: Check if a set of indices I = {i | pi = x} can be covered.

Greedy algorithm

• Place a covering interval [i , i + d) to start on the first uncovered i ∈ I.
• Move this interval to the left to start on the smallest index j so that

• it still covers the same relevant indices, that is, [i , i + d) ∩ I = [j, j + d) ∩ I, and
• it is at least d far away from the previous interval.

• If [j + d , j + 2d) ∩ I ̸= ∅, then I cannot be covered. Otherwise repeat until all of I is covered.

Correctness can be proven via greedy stays ahead argument. Time complexity: O(|I|).



M: Mex Hex
Problem author: Niklas Mohrin

New problem: Check if a set of indices I = {i | pi = x} can be covered.

Greedy algorithm

• Place a covering interval [i , i + d) to start on the first uncovered i ∈ I.
• Move this interval to the left to start on the smallest index j so that

• it still covers the same relevant indices, that is, [i , i + d) ∩ I = [j, j + d) ∩ I, and
• it is at least d far away from the previous interval.

• If [j + d , j + 2d) ∩ I ̸= ∅, then I cannot be covered. Otherwise repeat until all of I is covered.

Correctness can be proven via greedy stays ahead argument. Time complexity: O(|I|).

x x x



M: Mex Hex
Problem author: Niklas Mohrin

New problem: Check if a set of indices I = {i | pi = x} can be covered.

Greedy algorithm

• Place a covering interval [i , i + d) to start on the first uncovered i ∈ I.
• Move this interval to the left to start on the smallest index j so that

• it still covers the same relevant indices, that is, [i , i + d) ∩ I = [j, j + d) ∩ I, and
• it is at least d far away from the previous interval.

• If [j + d , j + 2d) ∩ I ̸= ∅, then I cannot be covered. Otherwise repeat until all of I is covered.

Correctness can be proven via greedy stays ahead argument. Time complexity: O(|I|).

x x x



M: Mex Hex
Problem author: Niklas Mohrin

New problem: Check if a set of indices I = {i | pi = x} can be covered.

Greedy algorithm

• Place a covering interval [i , i + d) to start on the first uncovered i ∈ I.
• Move this interval to the left to start on the smallest index j so that

• it still covers the same relevant indices, that is, [i , i + d) ∩ I = [j, j + d) ∩ I, and
• it is at least d far away from the previous interval.

• If [j + d , j + 2d) ∩ I ̸= ∅, then I cannot be covered. Otherwise repeat until all of I is covered.

Correctness can be proven via greedy stays ahead argument. Time complexity: O(|I|).

x x x

Must include
second x



M: Mex Hex
Problem author: Niklas Mohrin

New problem: Check if a set of indices I = {i | pi = x} can be covered.

Greedy algorithm

• Place a covering interval [i , i + d) to start on the first uncovered i ∈ I.
• Move this interval to the left to start on the smallest index j so that

• it still covers the same relevant indices, that is, [i , i + d) ∩ I = [j, j + d) ∩ I, and
• it is at least d far away from the previous interval.

• If [j + d , j + 2d) ∩ I ̸= ∅, then I cannot be covered. Otherwise repeat until all of I is covered.

Correctness can be proven via greedy stays ahead argument. Time complexity: O(|I|).

x x x

Must include
second x



M: Mex Hex
Problem author: Niklas Mohrin

New problem: Check if a set of indices I = {i | pi = x} can be covered.

Greedy algorithm

• Place a covering interval [i , i + d) to start on the first uncovered i ∈ I.
• Move this interval to the left to start on the smallest index j so that

• it still covers the same relevant indices, that is, [i , i + d) ∩ I = [j, j + d) ∩ I, and
• it is at least d far away from the previous interval.

• If [j + d , j + 2d) ∩ I ̸= ∅, then I cannot be covered. Otherwise repeat until all of I is covered.

Correctness can be proven via greedy stays ahead argument. Time complexity: O(|I|).

x x x

Must include
second x

Must be d away from
previous interval



M: Mex Hex
Problem author: Niklas Mohrin

Solution

• Partition indices into Ix = {i | pi = x}.
• Check for x = 0, 1, . . . , n in increasing order whether Ix can be covered.

Time complexity:
∑n

x=0 O(|Ix |) = O(n).



Random facts

Jury work

• 784 secret test cases (≈ 60 per problem)

• 110 jury solutions, 257 jury submissions
• The minimum number of lines the jury needed to solve all problems is

4 + 32 + 16 + 7 + 33 + 25 + 1 + 12 + 105 + 16 + 8 + 3 + 16 = 278

On average 21.4 lines per problem
• The minimum number of characters the jury needed to solve all problems is

125 + 1083 + 409 + 292 + 869 + 613 + 50 + 366 + 2913 + 432 + 312 + 170 + 502 = 8136

On average 625.8 characters per problem



Random facts

Jury work

• 784 secret test cases (≈ 60 per problem)
• 110 jury solutions, 257 jury submissions

• The minimum number of lines the jury needed to solve all problems is

4 + 32 + 16 + 7 + 33 + 25 + 1 + 12 + 105 + 16 + 8 + 3 + 16 = 278

On average 21.4 lines per problem
• The minimum number of characters the jury needed to solve all problems is

125 + 1083 + 409 + 292 + 869 + 613 + 50 + 366 + 2913 + 432 + 312 + 170 + 502 = 8136

On average 625.8 characters per problem



Random facts

Jury work

• 784 secret test cases (≈ 60 per problem)
• 110 jury solutions, 257 jury submissions
• The minimum number of lines the jury needed to solve all problems is

4 + 32 + 16 + 7 + 33 + 25 + 1 + 12 + 105 + 16 + 8 + 3 + 16 = 278

On average 21.4 lines per problem

• The minimum number of characters the jury needed to solve all problems is

125 + 1083 + 409 + 292 + 869 + 613 + 50 + 366 + 2913 + 432 + 312 + 170 + 502 = 8136

On average 625.8 characters per problem



Random facts

Jury work

• 784 secret test cases (≈ 60 per problem)
• 110 jury solutions, 257 jury submissions
• The minimum number of lines the jury needed to solve all problems is

4 + 32 + 16 + 7 + 33 + 25 + 1 + 12 + 105 + 16 + 8 + 3 + 16 = 278

On average 21.4 lines per problem
• The minimum number of characters the jury needed to solve all problems is

125 + 1083 + 409 + 292 + 869 + 613 + 50 + 366 + 2913 + 432 + 312 + 170 + 502 = 8136

On average 625.8 characters per problem


