GCPC 2025 Presentation of Solutions

German Collegiate Programming Contest 2025

The GCPC Jury
August 9, 2025

GCPC 2025 Jury

Andreas Grigorjew

Paris Dauphine FR, CPUIm
Niko Hastrich

Saarland University

Yvonne Kothmeier

Felicia Lucke

Durham University UK, CPUIm
Niklas Mohrin
Hasso-Plattner-Institut Potsdam
Jannik Olbrich

Ulm University, CPUIm

Lucas Schwebler

Karlsruhe Institute of Technology

Christopher Weyand

MOIA GmbH, CPUIm

Paul Wild

Friedrich-Alexander University
Erlangen-Niirnberg, CPUIm

Wendy Yi

Karlsruhe Institute of Technology, CPUIm
Yidi Zang

Karlsruhe Institute of Technology
Michael Ziindorf

Karlsruhe Institute of Technology, CPUIm

GCPC 2025 Test Solvers

= Jonathan Dransfeld
Karlsruhe Institute of Technology
= Paula Marten
Hasso-Plattner-Institute Potsdam
= Michael Ruderer

Augsburg University, CPUIm

= Franz Sauerwald
Hasso-Plattner-Institute Potsdam

GCPC 2025 Technical Team

= Nathan Maier
CPUIm

= Alexander Schmid
CPUIm

= Pascal Weber
University of Vienna, CPUIm

A: Around the Table

Problem author: Wendy Yi, Michael Ziindorf

Problem

Given / players on the left of a table and r players on the right, how many different pairs face each

“C>

other during a game of around-the-table?

A: Around the Table

Problem author: Wendy Yi, Michael Ziindorf

000 000

= Player / on the left may face player i + ¢ and player i + ¢ — 1 (modn)

Observations

= Player i on the right may face player i/ + r and player i + r + 1 (modn)

A: Around the Table

Problem author: Wendy Yi, Michael Ziindorf

000 000

= Player / on the left may face player i + ¢ and player i + ¢ — 1 (modn)

Observations

= Player i on the right may face player i/ + r and player i + r + 1 (modn)
= Each player faces < 4 different players = < 2n pairs in total with n players

A: Around the Table

Problem author: Wendy Yi, Michael Ziindorf

000 000

= Player / on the left may face player i + ¢ and player i + ¢ — 1 (modn)

Observations

= Player i on the right may face player i/ + r and player i + r + 1 (modn)
= Each player faces < 4 different players = < 2n pairs in total with n players

= Some of the four indices may be equal = fewer opponents per player in this case

A: Around the Table

Problem author: Wendy Yi, Michael Ziindorf

000 000

= Player / on the left may face player i + ¢ and player i + ¢ — 1 (modn)

Observations

= Player i on the right may face player i/ + r and player i + r + 1 (modn)
= Each player faces < 4 different players = < 2n pairs in total with n players

= Some of the four indices may be equal = fewer opponents per player in this case

Solution

= If r =/ —1, then each player faces two different players = n pairs

A: Around the Table

Problem author: Wendy Yi, Michael Ziindorf

000 000

= Player / on the left may face player i + ¢ and player i + ¢ — 1 (modn)

Observations

= Player i on the right may face player i/ + r and player i + r + 1 (modn)
= Each player faces < 4 different players = < 2n pairs in total with n players

= Some of the four indices may be equal = fewer opponents per player in this case

Solution
= If r =/ —1, then each player faces two different players = n pairs

= If r=2{or r=/{—2, then each player faces three different players = n + 7 pairs

A: Around the Table

Problem author: Wendy Yi, Michael Ziindorf

000 000

= Player / on the left may face player i + ¢ and player i + ¢ — 1 (modn)

Observations

= Player i on the right may face player i/ + r and player i + r + 1 (modn)
= Each player faces < 4 different players = < 2n pairs in total with n players

= Some of the four indices may be equal = fewer opponents per player in this case

Solution
= If r =/ —1, then each player faces two different players = n pairs
= If r=2{or r=/{—2, then each player faces three different players = n + 7 pairs

= Else 2n pairs

B: Bustling Busride

Problem author: Niko Hastrich

Problem
Partition people queuing for a bus into contiguous segments minimizing the latest arrival time.
All people on the bus need to leave and possibly reenter at every stop (taking some time).

B: Bustling Busride

Problem author: Niko Hastrich

Problem
Partition people queuing for a bus into contiguous segments minimizing the latest arrival time.
All people on the bus need to leave and possibly reenter at every stop (taking some time).

Solution

= Binary Search the answer a*.

B: Bustling Busride

Problem author: Niko Hastrich

Problem
Partition people queuing for a bus into contiguous segments minimizing the latest arrival time.
All people on the bus need to leave and possibly reenter at every stop (taking some time).

Solution

= Binary Search the answer a*.

= For each tested a, put as many people into one bus B as possible while not arriving after time a.

B: Bustling Busride

Problem author: Niko Hastrich

Problem
Partition people queuing for a bus into contiguous segments minimizing the latest arrival time.
All people on the bus need to leave and possibly reenter at every stop (taking some time).

Solution

= Binary Search the answer a*.

= For each tested a, put as many people into one bus B as possible while not arriving after time a.

= Final arrival time of B is

Start(B) + MaxDist(B) + Z w - (#PeopleLeavingAt(s) + #PeopleEnteringAt(s))
seStops(B)

B: Bustling Busride

Problem author: Niko Hastrich

Problem
Partition people queuing for a bus into contiguous segments minimizing the latest arrival time.
All people on the bus need to leave and possibly reenter at every stop (taking some time).

Solution
= Binary Search the answer a*.
= For each tested a, put as many people into one bus B as possible while not arriving after time a.
= Final arrival time of B is
Start(B) + MaxDist(B) + Z w - (#PeopleLeavingAt(s) + #PeopleEnteringAt(s))
seStops(B)

= Start(B) + MaxDist(B) + Z 2w(1 + #ApproachedStopsBefore(Dest(p))).
pEPeopleRiding(B)

Solution (cont.)

= Need to maintain »
person p on the bus

pePeopleRiding(B) 2w(1 + #ApproachedStopsBefore(Dest(p))) for each new

Solution (cont.)

= Need to maintain »
person p on the bus

pePeopleRiding(B) 2w(1 + #ApproachedStopsBefore(Dest(p))) for each new

= Two cases:

Solution (cont.)

= Need to maintain »
person p on the bus

pePeopleRiding(B) 2w(1 + #ApproachedStopsBefore(Dest(p))) for each new

= Two cases:
= Dest(p) is already driven to:

Solution (cont.)

= Need to maintain »
person p on the bus

pePeopleRiding(B) 2w(1 + #ApproachedStopsBefore(Dest(p))) for each new
= Two cases:

= Dest(p) is already driven to:
Change in final arrival time = 2w(1 + #ApproachedStopsBefore(Dest(p)))

Solution (cont.)
= Need to maintain » ®) 2w(1 + #ApproachedStopsBefore(Dest(p))) for each new

person p on the bus

pePeopleRiding

= Two cases:

= Dest(p) is already driven to:
Change in final arrival time = 2w(1 + #ApproachedStopsBefore(Dest(p)))

= Dest(p) is not already driven to:

Solution (cont.)

= Need to maintain »
person p on the bus

®) 2w(1 + #ApproachedStopsBefore(Dest(p))) for each new

pePeopleRiding

= Two cases:
= Dest(p) is already driven to:
Change in final arrival time = 2w(1 + #ApproachedStopsBefore(Dest(p)))
= Dest(p) is not already driven to:
Change in final arrival time
= 2w(1 + #ApproachedStopsBefore(Dest(p)) + #PeopleLeavingAfter(Dest(p)))

Solution (cont.)

= Need to maintain »
person p on the bus

®) 2w(1 + #ApproachedStopsBefore(Dest(p))) for each new

pePeopleRiding

= Two cases:
= Dest(p) is already driven to:
Change in final arrival time = 2w(1 + #ApproachedStopsBefore(Dest(p)))
= Dest(p) is not already driven to:
Change in final arrival time
= 2w(1 + #ApproachedStopsBefore(Dest(p)) + #PeopleLeavingAfter(Dest(p)))

= Can be maintained in O(log n) with (basically) any tree data structure.

Solution (cont.)

= Need to maintain »
person p on the bus

pePeopleRiding(B) 2w(1 + #ApproachedStopsBefore(Dest(p))) for each new

= Two cases:

= Dest(p) is already driven to:
Change in final arrival time = 2w(1 + #ApproachedStopsBefore(Dest(p)))
= Dest(p) is not already driven to:
Change in final arrival time
= 2w(1 + #ApproachedStopsBefore(Dest(p)) + #PeopleLeavingAfter(Dest(p)))

= Can be maintained in O(log n) with (basically) any tree data structure.

= Watch out to not TLE when many buses are needed.

Solution (cont.)

= Need to maintain »
person p on the bus

pePeopleRiding(B) 2w(1 + #ApproachedStopsBefore(Dest(p))) for each new

= Two cases:

= Dest(p) is already driven to:
Change in final arrival time = 2w(1 + #ApproachedStopsBefore(Dest(p)))
= Dest(p) is not already driven to:
Change in final arrival time
= 2w(1 + #ApproachedStopsBefore(Dest(p)) + #PeopleLeavingAfter(Dest(p)))

= Can be maintained in O(log n) with (basically) any tree data structure.

= Watch out to not TLE when many buses are needed.
= You need might need to rollback the updates to your data structure instead of building it fresh.

Solution (cont.)

= Need to maintain »
person p on the bus

pePeopleRiding(B) 2w(1 + #ApproachedStopsBefore(Dest(p))) for each new
= Two cases:
= Dest(p) is already driven to:
Change in final arrival time = 2w(1 + #ApproachedStopsBefore(Dest(p)))
= Dest(p) is not already driven to:
Change in final arrival time
= 2w(1 + #ApproachedStopsBefore(Dest(p)) + #PeopleLeavingAfter(Dest(p)))
= Can be maintained in O(log n) with (basically) any tree data structure.

= Watch out to not TLE when many buses are needed.
= You need might need to rollback the updates to your data structure instead of building it fresh.

= Running time for testing one particular a: O(nlog n)

Solution (cont.)

= Need to maintain »
person p on the bus

pePeopleRiding(B) 2w(1 + #ApproachedStopsBefore(Dest(p))) for each new
= Two cases:
= Dest(p) is already driven to:
Change in final arrival time = 2w(1 + #ApproachedStopsBefore(Dest(p)))
= Dest(p) is not already driven to:
Change in final arrival time
= 2w(1 + #ApproachedStopsBefore(Dest(p)) + #PeopleLeavingAfter(Dest(p)))
= Can be maintained in O(log n) with (basically) any tree data structure.
= Watch out to not TLE when many buses are needed.

= You need might need to rollback the updates to your data structure instead of building it fresh.
= Running time for testing one particular a: O(nlog n)

= Running time for solving the whole problem: O(nlog nloga®)

C: Congklak

Problem author: Lucas Schwebler

Problem
There is a game board with n holes, initially hole i contains a; stones. Perform the following "game"

exactly t times: Drop one stone into hole 1 and simulate according to the rules of Congklak. How

many stones are in each hole after playing t of those games?

-~ ,ne e
v \d
L) yo, ° o e 0.0 o o &
| &

C: Congklak

Problem author: Lucas Schwebler

Observation

0 |0|0|0|0|0|0| = Look at the process with a; = 0.

C: Congklak

Problem author: Lucas Schwebler

Observation

0 |0|0|0|0|0|0| = Look at the process with a; = 0.

= Odd indices are counting upwards in binary! (least

| significant bit is at hole 1)

C: Congklak

Problem author: Lucas Schwebler

Observation

o [ofofofofo]o]

Look at the process with a; = 0.
Odd indices are counting upwards in binary! (least
significant bit is at hole 1)

Even indices contain the number of overflows of the
digits.

C: Congklak

Problem author: Lucas Schwebler

Solution 1
= Suppose that holes 1,3,...,2k — 1 are empty.

= Then, the next 2X — 1 games are easy to simulate (binary counting).

C: Congklak

Problem author: Lucas Schwebler

Solution 1
= Suppose that holes 1,3,...,2k — 1 are empty.
= Then, the next 2X — 1 games are easy to simulate (binary counting).
= After that, simulate one game naively in O(n).

= Then, holes 1,3,...,2k + 1 are empty; repeat as above with larger k.

C: Congklak

Problem author: Lucas Schwebler

Solution 1

Suppose that holes 1,3,...,2k — 1 are empty.

Then, the next 2 — 1 games are easy to simulate (binary counting).

After that, simulate one game naively in O(n).

Then, holes 1,3,...,2k 4+ 1 are empty; repeat as above with larger k.

If k reaches log,(t), we can simulate all remaining games with binary counting.

Thus, we only need to simulate O(log(t)) games naively.

C: Congklak

Problem author: Lucas Schwebler

Solution 2 (Easier to implement!)
= |If hole 1 is not empty, simulate one game naively.

= So suppose that hole 1 is empty.

C: Congklak

Problem author: Lucas Schwebler

Solution 2 (Easier to implement!)
= |If hole 1 is not empty, simulate one game naively.
= So suppose that hole 1 is empty.
= Suppose that r games are remaining.
= Hole 1 will contain r mod 2 stones in the end.
= Hole 2 will contain BJ additional stones.
= Repeat the same process starting from hole 3 with BJ remaining games.

= Time complexity: O(nlog(t))

C: Congklak

Problem author: Lucas Schwebler

Solution 2 (Easier to implement!)

If hole 1 is not empty, simulate one game naively.

So suppose that hole 1 is empty.

Suppose that r games are remaining.

Hole 1 will contain r mod 2 stones in the end.

Hole 2 will contain BJ additional stones.

Repeat the same process starting from hole 3 with BJ remaining games.

Time complexity: O(nlog(t))

{
—s [2]0]o]0]o]0]

C: Congklak

Problem author: Lucas Schwebler

Solution 2 (Easier to implement!)

If hole 1 is not empty, simulate one game naively.

So suppose that hole 1 is empty.

Suppose that r games are remaining.

Hole 1 will contain r mod 2 stones in the end.

Hole 2 will contain BJ additional stones.

Repeat the same process starting from hole 3 with BJ remaining games.

Time complexity: O(nlog(t))

1
= |o|1|1|1|0|0|

C: Congklak

Problem author: Lucas Schwebler

Solution 2 (Easier to implement!)

If hole 1 is not empty, simulate one game naively.

So suppose that hole 1 is empty.

Suppose that r games are remaining.

Hole 1 will contain r mod 2 stones in the end.

Hole 2 will contain BJ additional stones.

Repeat the same process starting from hole 3 with BJ remaining games.

Time complexity: O(nlog(t))

1
=3 |1|4|1|1|0|0|

C: Congklak

Problem author: Lucas Schwebler

Solution 2 (Easier to implement!)

If hole 1 is not empty, simulate one game naively.

So suppose that hole 1 is empty.

Suppose that r games are remaining.

Hole 1 will contain r mod 2 stones in the end.

Hole 2 will contain BJ additional stones.

Repeat the same process starting from hole 3 with BJ remaining games.

Time complexity: O(nlog(t))

1
=2 [1]«Jo]2]1]0]

C: Congklak

Problem author: Lucas Schwebler

Solution 2 (Easier to implement!)

If hole 1 is not empty, simulate one game naively.

So suppose that hole 1 is empty.

Suppose that r games are remaining.

Hole 1 will contain r mod 2 stones in the end.

Hole 2 will contain BJ additional stones.

Repeat the same process starting from hole 3 with BJ remaining games.

Time complexity: O(nlog(t))

A
p=1 |1|4|o|3|1|0|

C: Congklak

Problem author: Lucas Schwebler

Solution 2 (Easier to implement!)

If hole 1 is not empty, simulate one game naively.

So suppose that hole 1 is empty.

Suppose that r games are remaining.

Hole 1 will contain r mod 2 stones in the end.

Hole 2 will contain BJ additional stones.

Repeat the same process starting from hole 3 with BJ remaining games.

Time complexity: O(nlog(t))

A
r=0 |1|4|o|3|0|1|

D: Demand for Cycling

Problem author: Jannik Olbrich

Problem

Given an axis-aligned polygon, find an enclosing axis-aligned polygon with minimum circumference

Solution

= Insight: An optimal solution has no two consecutive convex vertices
— Any optimal solution is rectilinear convex

= What's the circumference of such a polygon?

D: Demand for Cycling

Problem author: Jannik Olbrich

Problem

Given an axis-aligned polygon, find an enclosing axis-aligned polygon with minimum circumference

Solution

= Insight: An optimal solution has no two consecutive convex vertices
— Any optimal solution is rectilinear convex

= What's the circumference of such a polygon? 2(Xmax — Xmin) + 2(Ymax — Ymin)
= This is the same as the rectangle with corners (Xmin, Ymin) and (Xmax, Ymax)
o [Finel G, SGme Ymin and Ymax

= Time complexity: O(n)

E: Engineering Excellence

Problem author: Yidi Zang

Problem
= Given a convex polygon with internal angles > 90°.
= Move one point to maximize the perimeter.

= The polygon must stay convex (angles < 180°) and all internal angles > 90°.

E: Engineering Excellence

Problem author: Yidi Zang

Problem
= Given a convex polygon with internal angles > 90°.
= Move one point to maximize the perimeter.

= The polygon must stay convex (angles < 180°) and all internal angles > 90°.

Solution

o

= Try to move every point individually.

Excellence

Problem author: Yidi Zang

Problem
= Given a convex polygon with internal angles > 90°.
= Move one point to maximize the perimeter.

= The polygon must stay convex (angles < 180°) and all internal angles > 90°.

Solution

o

= Try to move every point individually.

» The angle ZBCD is in [90°,180°] if C stays 1]
within the Thales semicircle.

E: Engineering Excellence

Problem author: Yidi Zang

Problem
= Given a convex polygon with internal angles > 90°.
= Move one point to maximize the perimeter.

= The polygon must stay convex (angles < 180°) and all internal angles > 90°.

Solution
= Try to move every point individually. 5
= The angle ZBCD is in [90°,180°] if C stays 4

within the Thales semicircle.

= |deally, we move C to the middle top of the
Thales semicircle.

= This maximizes the perimeter.

Solution
= Ideally, we move C to the middle top of the Thales semicircle.
= This maximizes the perimeter.

= However, this is not always possible because of the angles ZABC and ZCDE.

Solution

= The angle ZCDE is < 180°, if C stays in the green halfplane.

o

Solution
= The angle ZCDE is < 180°, if C stays in the green halfplane.

= By intuition or triangle inequality, the intersection point between halfplane line and Thales
semicircle is optimal (or middle top of Thales circle).

o

Solution

= The angle ZCDE is < 180°, if C stays in the green halfplane.

= By intuition or triangle inequality, the intersection point between halfplane line and Thales
semicircle is optimal (or middle top of Thales circle).

= There is also a (pink) halfplane for ZCDE > 90° (and < 270°).

5 5
4 4
3 3
2 D B 2 D B
1 1

Solution

= The angle ZCDE is < 180°, if C stays in the green halfplane.

= By intuition or triangle inequality, the intersection point between halfplane line and Thales
semicircle is optimal (or middle top of Thales circle).

= There is also a (pink) halfplane for ZCDE > 90° (and < 270°).

= One of the two halfplanes completely contains the semicircle, ignore that one.

5 5
4 4
3 3
2 D B 2 D B
1 1

Solution
= Both angles ZABC and ZCDE have one relevant halfplane.

= The halfplane lines might intersect in the semicircle.

Solution
= Both angles ZABC and ZCDE have one relevant halfplane.
= The halfplane lines might intersect in the semicircle.

= Here, the intersection point of the lines is optimal.

Solution

A woN e

In total, there are four possible optimal points:

Middle top of the Thales semicircle.

Intersection ZABC halfplane and Thales semicircle.

. Intersection ZCDE halfplane and Thales semicircle.

. Intersection ZABC and ZCDE halfplane lines.

Solution

> ® N =

In total, there are four possible optimal points:

Middle top of the Thales semicircle.
Intersection ZABC halfplane and Thales semicircle.
Intersection Z CDE halfplane and Thales semicircle.

Intersection ZABC and ZCDE halfplane lines.

Try all of these points and check whether they are valid.

Solution

= |n total, there are four possible optimal points:

. Middle top of the Thales semicircle.
. Intersection ZABC halfplane and Thales semicircle.
. Intersection ZCDE halfplane and Thales semicircle.

Intersection ZABC and ZCDE halfplane lines.

A W N R

= Try all of these points and check whether they are valid.
= Take care of precision issues: Use long double and large ¢ (e.g. € = 107").
= Runtime: O(n).

F: Fair and Square

Problem author: Paul Wild

Problem
You are given a region consisting of some cells in a rectangular grid. Find the longest possible length
such that the region can be divided into squares of that side length.

F: Fair and Square

Problem author: Paul Wild

Solution

= Testing whether a given length is possible can be done in O(h - w):
= Scan over the grid from top left to bottom right
= Whenever an unmarked cell is encountered, it must be the top left corner of a square
= Check if a square can be placed here and mark all cells belonging to it, then continue scanning
= In the end, check if all cells of the region have been marked
= The time does not depend on the size of the square!
= Testing all side lengths from 1 to min(h, w) is too slow for the given bounds
= Key Improvement: Only test side lengths k such that k* divides n, the number of cells
= The worst case in the given bounds is n = 2822400 = 28.32.52.72 which has 40 square divisors

= With this improvement, the solution is fast enough

G: Generating Cool Passwords Company

Problem author: Paul Wild

Problem
Generate a list of n passwords (1 < n < 1000).

1. Passwords must contain at least one each of a-z, A-Z, 0-9 and a special symbol (e.g. ! or #)
2. Passwords must have pairwise edit distance at least 2

3. Passwords must be between 8 and 12 in length

G: Generating Cool Passwords Company

Problem author: Paul Wild

Problem
Generate a list of n passwords (1 < n < 1000).

1. Passwords must contain at least one each of a-z, A-Z, 0-9 and a special symbol (e.g. ! or #)

2. Passwords must have pairwise edit distance at least 2

3. Passwords must be between 8 and 12 in length

Solution
= Here's one of the many approaches that work:
000GCPC!x000, 001GCPC!x001, 002GCPC!x002, ..., 999GCPC!x999

= The common part GCPC!x is used to satisfy rules 1 and 3
= The two counters are used to satisfy rule 2

= Other approaches include using randomization, permutations, or the digits of 7

H: Happy Hookup

Problem author: Andreas Grigorjew

Problem
= We are given a directed graph with n vertices and m edges, and two different vertices u and v.

= Find a vertex c, such that there is a path from u to ¢ and a path from v to c. Or return that no
such vertex exists.

H: Happy Hookup

Problem author: Andreas Grigorjew

Problem
= We are given a directed graph with n vertices and m edges, and two different vertices u and v.

= Find a vertex c, such that there is a path from u to ¢ and a path from v to c. Or return that no
such vertex exists.
Solution
= |Implement a depth first search or a breadth first search.

= Call two searches: one starting from u, one starting from v.

H: Happy Hookup

Problem author: Andreas Grigorjew

Problem
= We are given a directed graph with n vertices and m edges, and two different vertices u and v.

= Find a vertex c, such that there is a path from u to ¢ and a path from v to c. Or return that no

such vertex exists.

Solution
= |mplement a depth first search or a breadth first search.
= Call two searches: one starting from u, one starting from v.

= Maintain a boolean array for both searches, indicating for every vertex whether it has been
reached by the search.

= Qutput any vertex for which the entry in both arrays is true, or output “no” if no such vertex

exists.

= Runtime: O(n+ m).

I: Island Urbanism

Problem author: icia Lucke, Jannik Olbrich, Paul Wild

Problem
Given a graph G consisting of a large cycle where some edges are replaced by an arbitrary connected

graph (a village). Further, given terminal vertices in G such that every village contains at most 7
terminals. Find a Steiner Tree in G, that is, a subtree of G connecting all terminals.

I: Island Urbanism

Problem author: Felicia Lucke, Jannik Olbrich, Paul Wild

Problem

Given a graph G consisting of a large cycle where some edges are replaced by an arbitrary connected
graph (a village). Further, given terminal vertices in G such that every village contains at most 7
terminals. Find a Steiner Tree in G, that is, a subtree of G connecting all terminals.

Solution
How do we solve this for few terminals?

= Dynamic Programming: Let D(S, i) be the weight of the smallest tree connecting the terminals

in S and vertex i:

D(®,i)=0 Vi

D(S,i) < D(S\{i}, i) if i is a terminal

D(S,i) < D(S,j) +w if there is an edge (i,;) with weight w
D(S,i) < D(A,i)+ D(S\A,i) VACS

= Time Complexity: O(n- 3% 4+ 2% . m - log n) for n vertices, m edges, and k terminals

I: Island Urbanism

Problem author: icia Lucke, Jannik Olbrich, Paul Wild

Problem

Given a graph G consisting of a large cycle where some edges are replaced by an arbitrary connected
graph (a village). Further, given terminal vertices in G such that every village contains at most 7
terminals. Find a Steiner Tree in G, that is, a subtree of G connecting all terminals.

Solution

= The solution is a tree
—> We must cut the cycle somewhere

= Two cases:

= Cut inside a village (s.t. the “leftmost” and “rightmost” vertices are disconnected within the village)
= Cut between two villages (“leftmost” and “rightmost” vertices are connected within the villages)

= Treat “leftmost” and “rightmost” vertices of villages as terminals
—> cases can be computed with DP

= Just try cutting between any adjacent villages, and within each village!
= Take care with villages without terminals

= Time Complexity: O(n-3" +27 - m- log n)

J: Jumbled Packets

Problem author: Yidi Zang

Problem
= This is a multi pass problem.
= You are given a binary string s of length n (1 < n < 10°).
= Encode it into a ternary string of length n.

= After this string is cyclically rotated by some amount, restore the original string s.

J: Jumbled Packets
Problem author: Yidi Zang

Problem
= This is a multi pass problem.
= You are given a binary string s of length n (1 < n < 10°).
= Encode it into a ternary string of length n.

= After this string is cyclically rotated by some amount, restore the original string s.

Encode

= |f the string s consists of only ‘0’, do nothing.

J: Jumbled Packets
Problem author: Yidi Zang

Problem
= This is a multi pass problem.
= You are given a binary string s of length n (1 < n < 10°).
= Encode it into a ternary string of length n.

= After this string is cyclically rotated by some amount, restore the original string s.

Encode
= |f the string s consists of only ‘0’, do nothing.
= Otherwise, find the first ‘1"
= Replace everything up to that ‘1" with ‘2",
= For example, replace “00001011" with “22222011".

J: Jumbled Packets
Problem author: Yidi Zang

Encode
= |f the string s consists of only ‘0’, do nothing.
= Otherwise, find the first ‘1"
= Replace everything up to that ‘1" with ‘2",
= For example, replace “00001011"” with “22222011".

Decode

= |f the received ternary string consists of only ‘0’, this is already decoded.

J: Jumbled Packets

Problem author: Yidi Zang

Encode
= |f the string s consists of only ‘0’, do nothing.
= Otherwise, find the first ‘1"
= Replace everything up to that ‘1" with ‘2",
= For example, replace “00001011"” with “22222011".

Decode

= |f the received ternary string consists of only ‘0’, this is already decoded.
= Otherwise, find the substring of ‘2’s.
= Careful, this might wrap over the end, e.g. “22011222".

J: Jumbled Packets
Problem author: Yidi Zang

Encode
= |f the string s consists of only ‘0’, do nothing.
= Otherwise, find the first ‘1"
= Replace everything up to that ‘1" with ‘2",
= For example, replace “00001011"” with “22222011".

Decode

= |f the received ternary string consists of only ‘0’, this is already decoded.
= Otherwise, find the substring of ‘2’s.
= Careful, this might wrap over the end, e.g. “22011222".

= Rotate this substring to the beginning, “22011222" — “22222011".

J: Jumbled Packets
Problem author: Yidi Zang

Encode
= |f the string s consists of only ‘0’, do nothing.
= Otherwise, find the first ‘1"
= Replace everything up to that ‘1" with ‘2",
= For example, replace “00001011"” with “22222011".

Decode

= |f the received ternary string consists of only ‘0’, this is already decoded.
= Otherwise, find the substring of ‘2’s.
= Careful, this might wrap over the end, e.g. “22011222".

= Rotate this substring to the beginning, “22011222" — “22222011".
= Replace the last ‘2" with ‘1, all other ‘2’s with ‘0", “22222011" — “00001011".

J: Jumbled Packets
Problem author: Yidi Zang

Encode
= |f the string s consists of only ‘0’, do nothing.
= Otherwise, find the first ‘1"
= Replace everything up to that ‘1" with ‘2",
= For example, replace “00001011"” with “22222011".

Decode

= |f the received ternary string consists of only ‘0’, this is already decoded.
= Otherwise, find the substring of ‘2’s.
= Careful, this might wrap over the end, e.g. “22011222".

= Rotate this substring to the beginning, “22011222" — “22222011".
= Replace the last ‘2" with ‘1, all other ‘2’s with ‘0", “22222011" — “00001011".
= Encoding and decoding both take O(n).

K: Karlsruhe Skyline
Problem author: Paul Wild

Problem
Given integers n, a and b, find a permutation of building of heights 1 to n such that a buildings can
be seen from the left and b buildings can be seen from the right, or say that none exists.

K: Karlsruhe Skyline

Problem author: Paul Wild

Solution

= There are two types of cases where no solution exists:

= Only building n can be seen from both sides, so a+ b > n+ 1 is impossible
= Building n must always be next to a 1 clue, so we cannot have a=b =1

= The following setup can be used in the general case:

__ﬁmﬂﬂ

a—1 b—1

= |If a=1or b =1 you may need to reverse the middle part.

L: Labour Laws

Problem author: Yvonne Kothmeier

Problem

Given time t,,. Find the minimum time 0 < t3, such that
= t, —t, < 60%6 or

= t, —t, <60%x9 A t, > 30 or
= t, —t, <6010 A t, > 45

L: Labour Laws
Problem author: Yvonne Kothmeier

Problem

Given time t,,. Find the minimum time 0 < t,, such that

= t, —tp, <60 %6 or
= t, —tp, <60%x9 A t, > 30 or
s t, —t, <60%x10At, > 45

Solution 1

= Case matching

= ift, <60%x6=10

= if60%x6+30 < t, <60%9+30= 30
= if 60%9+45 < t, <60=x 10+ 45 = 45
= if 60 * 10 + 45 < t, = Output difference

L: Labour Laws
Problem author: Yvonne Kothmeier

Problem

Given time t,,. Find the minimum time 0 < t,, such that

= t, —tp, <60 %6 or
= t, —tp, <60%x9 A t, > 30 or
s t, —t, <60%x10At, > 45

Solution 1

= Case matching

= ift, <60%x6=10

= if60%x6+30 < t, <60%9+30= 30
= if 60%9+45 < t, <60=x 10+ 45 = 45
= if 60 * 10 + 45 < t, = Output difference

= Fill gaps between cases by adding difference to lower bracket to solution

L: Labour Laws

Problem author: Yvonne Kothmeier

Problem

Given time t,,. Find the minimum time 0 < t3, such that

= twftb§60*6or
= t, —t, <60%x9 A t, > 30 or
= t, —t, <6010 A t, > 45

Solution 2
= Loop over t, from O to t,
= Check if solution is valid

= Qutput first valid solution

M: Mex Hex
Problem author: Niklas Mohrin

Problem
Given an array p and an integer d, cover length-d intervals of p so that the mex of the uncovered
numbers is minimized. After a covered interval, the next d numbers cannot be covered.

M: Mex Hex
Problem author: Niklas Mohrin

Problem
Given an array p and an integer d, cover length-d intervals of p so that the mex of the uncovered
numbers is minimized. After a covered interval, the next d numbers cannot be covered.

Observations

= Let p’ be the set of uncovered numbers.

= How to achieve mex(p’) = 0 (the best possible)?

M: Mex Hex
Problem author: Niklas Mohrin

Problem
Given an array p and an integer d, cover length-d intervals of p so that the mex of the uncovered
numbers is minimized. After a covered interval, the next d numbers cannot be covered.

Observations

= Let p’ be the set of uncovered numbers.

= How to achieve mex(p’) = 0 (the best possible)? = Cover all i with p; = 0.

M: Mex Hex
Problem author: Niklas Mohrin

Problem
Given an array p and an integer d, cover length-d intervals of p so that the mex of the uncovered
numbers is minimized. After a covered interval, the next d numbers cannot be covered.

Observations
= Let p’ be the set of uncovered numbers.
= How to achieve mex(p’) = 0 (the best possible)? = Cover all i with p; = 0.

= In general, covering all i with p; = x implies that mex(p’) < x.

M: Mex Hex

Problem author: Niklas Mohrin

New problem: Check if a set of indices Z = {/i | pj = x} can be covered.

M: Mex Hex

Problem author: Niklas Mohrin

New problem: Check if a set of indices Z = {/i | pj = x} can be covered.
Greedy algorithm

= Place a covering interval [i, i + d) to start on the first uncovered i € Z.

M: Mex Hex

Problem author: Niklas Mohrin

New problem: Check if a set of indices Z = {/i | pj = x} can be covered.
Greedy algorithm

= Place a covering interval [i, i + d) to start on the first uncovered i € Z.
= Move this interval to the left to start on the smallest index j so that

= it still covers the same relevant indices, that is, [i,i +d)NZ = [j,j+ d)NZ, and
= it is at least d far away from the previous interval.

M: Mex Hex

Problem author: Niklas Mohrin

New problem: Check if a set of indices Z = {/i | pj = x} can be covered.
Greedy algorithm

= Place a covering interval [i, i + d) to start on the first uncovered i € Z.
= Move this interval to the left to start on the smallest index j so that
= it still covers the same relevant indices, that is, [i,i +d)NZ = [j,j+ d)NZ, and

= it is at least d far away from the previous interval.

w If [j+d,j+2d)NZ # 0, then Z cannot be covered. Otherwise repeat until all of Z is covered.

M: Mex Hex

Problem author: Niklas Mohrin

New problem: Check if a set of indices Z = {/i | pj = x} can be covered.
Greedy algorithm

= Place a covering interval [i, i + d) to start on the first uncovered i € Z.
= Move this interval to the left to start on the smallest index j so that

= it still covers the same relevant indices, that is, [i,i +d)NZ = [j,j+ d)NZ, and
= it is at least d far away from the previous interval.

w If [j+d,j+2d)NZ # 0, then Z cannot be covered. Otherwise repeat until all of Z is covered.

Correctness can be proven via greedy stays ahead argument. Time complexity: O(|Z]).

M: Mex Hex

Problem author: Niklas Mohrin

New problem: Check if a set of indices Z = {/i | pj = x} can be covered.
Greedy algorithm

= Place a covering interval [/, i + d) to start on the first uncovered i € Z.
= Move this interval to the left to start on the smallest index j so that

= it still covers the same relevant indices, that is, [i,i +d)NZ = [j,j + d) N Z, and
= jtis at least d far away from the previous interval.

= If[j+d,j+2d)NZ #0, then Z cannot be covered. Otherwise repeat until all of Z is covered.

Correctness can be proven via greedy stays ahead argument. Time complexity: O(|Z]).

M: Mex Hex

Problem author: Niklas Mohrin

New problem: Check if a set of indices Z = {/i | pj = x} can be covered.
Greedy algorithm

= Place a covering interval [/, i + d) to start on the first uncovered i € Z.
= Move this interval to the left to start on the smallest index j so that

= it still covers the same relevant indices, that is, [i,i +d)NZ = [j,j + d) N Z, and
= jtis at least d far away from the previous interval.

= If[j+d,j+2d)NZ #0, then Z cannot be covered. Otherwise repeat until all of Z is covered.

Correctness can be proven via greedy stays ahead argument. Time complexity: O(|Z]).

M: Mex Hex

Problem author: Niklas Mohrin

New problem: Check if a set of indices Z = {/i | pj = x} can be covered.
Greedy algorithm

= Place a covering interval [/, i + d) to start on the first uncovered i € Z.
= Move this interval to the left to start on the smallest index j so that

= it still covers the same relevant indices, that is, [i,i +d)NZ = [j,j + d) N Z, and
= jtis at least d far away from the previous interval.

= If[j+d,j+2d)NZ #0, then Z cannot be covered. Otherwise repeat until all of Z is covered.

Correctness can be proven via greedy stays ahead argument. Time complexity: O(|Z]).

Must include
second z

M: Mex Hex

Problem author: Niklas Mohrin

New problem: Check if a set of indices Z = {/i | pj = x} can be covered.
Greedy algorithm

= Place a covering interval [/, i + d) to start on the first uncovered i € Z.
= Move this interval to the left to start on the smallest index j so that

= it still covers the same relevant indices, that is, [i,i +d)NZ = [j,j + d) N Z, and
= jtis at least d far away from the previous interval.

= If[j+d,j+2d)NZ #0, then Z cannot be covered. Otherwise repeat until all of Z is covered.

Correctness can be proven via greedy stays ahead argument. Time complexity: O(|Z]).

Must include
second z

M: Mex Hex

Problem author: Niklas Mohrin

New problem: Check if a set of indices Z = {/i | pj = x} can be covered.
Greedy algorithm

= Place a covering interval [/, i + d) to start on the first uncovered i € Z.
= Move this interval to the left to start on the smallest index j so that

= it still covers the same relevant indices, that is, [i,i +d)NZ = [j,j + d) N Z, and
= jtis at least d far away from the previous interval.

= If[j+d,j+2d)NZ #0, then Z cannot be covered. Otherwise repeat until all of Z is covered.

Correctness can be proven via greedy stays ahead argument. Time complexity: O(|Z]).

Must include Must be d away from
second x previous interval

M: Mex Hex
Problem author: Niklas Mohrin

Solution
= Partition indices into Z, = {i | pi = x}.

= Check for x =0,1,...,n in increasing order whether Z, can be covered.

Time complexity: Y O(|Z.]) = O(n).

Jury work

= 784 secret test cases (= 60 per problem)

Jury work
= 784 secret test cases (= 60 per problem)

= 110 jury solutions, 257 jury submissions

Jury work
= 784 secret test cases (= 60 per problem)
= 110 jury solutions, 257 jury submissions

= The minimum number of lines the jury needed to solve all problems is
44+32+164+7+33+25+1+124105+16+8+3 416 =278

On average 21.4 lines per problem

Jury work
= 784 secret test cases (= 60 per problem)
= 110 jury solutions, 257 jury submissions

= The minimum number of lines the jury needed to solve all problems is
44+32+164+7+33+25+1+124105+16+8+3 416 =278

On average 21.4 lines per problem

= The minimum number of characters the jury needed to solve all problems is
125 + 1083 + 409 + 292 + 869 + 613 + 50 + 366 + 2913 + 432 + 312 + 170 + 502 = 8136

On average 625.8 characters per problem

