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A: Around the Table

Problem author: Wendy Yi, Michael Ziindorf

Problem

Given / players on the left of a table and r players on the right, how many different pairs face each

“C>

other during a game of around-the-table?
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A: Around the Table

Problem author: Wendy Yi, Michael Ziindorf

000 000

= Player / on the left may face player i + ¢ and player i + ¢ — 1 (modn)

Observations

= Player i on the right may face player i/ + r and player i + r + 1 (modn)
= Each player faces < 4 different players = < 2n pairs in total with n players

= Some of the four indices may be equal = fewer opponents per player in this case

Solution
= If r =/ —1, then each player faces two different players = n pairs
= If r=2{or r=/{—2, then each player faces three different players = n + 7 pairs

= Else 2n pairs
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Partition people queuing for a bus into contiguous segments minimizing the latest arrival time.
All people on the bus need to leave and possibly reenter at every stop (taking some time).
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B: Bustling Busride

Problem author: Niko Hastrich

Problem
Partition people queuing for a bus into contiguous segments minimizing the latest arrival time.
All people on the bus need to leave and possibly reenter at every stop (taking some time).

Solution
= Binary Search the answer a*.
= For each tested a, put as many people into one bus B as possible while not arriving after time a.
= Final arrival time of B is
Start(B) + MaxDist(B) + Z w - (#PeopleLeavingAt(s) + #PeopleEnteringAt(s))
seStops(B)

= Start(B) + MaxDist(B) + Z 2w(1 + #ApproachedStopsBefore(Dest(p))).
pEPeopleRiding(B)
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Solution (cont.)

= Need to maintain »
person p on the bus

pePeopleRiding(B) 2w(1 + #ApproachedStopsBefore(Dest(p))) for each new
= Two cases:
= Dest(p) is already driven to:
Change in final arrival time = 2w(1 + #ApproachedStopsBefore(Dest(p)))
= Dest(p) is not already driven to:
Change in final arrival time
= 2w(1 + #ApproachedStopsBefore(Dest(p)) + #PeopleLeavingAfter(Dest(p)))
= Can be maintained in O(log n) with (basically) any tree data structure.
= Watch out to not TLE when many buses are needed.

= You need might need to rollback the updates to your data structure instead of building it fresh.
= Running time for testing one particular a: O(nlog n)

= Running time for solving the whole problem: O(nlog nloga®)



C: Congklak

Problem author: Lucas Schwebler

Problem
There is a game board with n holes, initially hole i contains a; stones. Perform the following "game"

exactly t times: Drop one stone into hole 1 and simulate according to the rules of Congklak. How

many stones are in each hole after playing t of those games?
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C: Congklak

Problem author: Lucas Schwebler

Observation

o [ofofofofo]o]

Look at the process with a; = 0.
Odd indices are counting upwards in binary! (least
significant bit is at hole 1)

Even indices contain the number of overflows of the
digits.
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C: Congklak

Problem author: Lucas Schwebler

Solution 1

Suppose that holes 1,3,...,2k — 1 are empty.

Then, the next 2 — 1 games are easy to simulate (binary counting).

After that, simulate one game naively in O(n).

Then, holes 1,3,...,2k 4+ 1 are empty; repeat as above with larger k.

If k reaches log,(t), we can simulate all remaining games with binary counting.

Thus, we only need to simulate O(log(t)) games naively.
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Problem author: Lucas Schwebler

Solution 2 (Easier to implement!)

If hole 1 is not empty, simulate one game naively.

So suppose that hole 1 is empty.

Suppose that r games are remaining.

Hole 1 will contain r mod 2 stones in the end.

Hole 2 will contain BJ additional stones.

Repeat the same process starting from hole 3 with BJ remaining games.

Time complexity: O(nlog(t))

A
r=0 |1|4|o|3|0|1|
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Problem author: Jannik Olbrich

Problem

Given an axis-aligned polygon, find an enclosing axis-aligned polygon with minimum circumference

Solution

= Insight: An optimal solution has no two consecutive convex vertices
— Any optimal solution is rectilinear convex

= What's the circumference of such a polygon?



D: Demand for Cycling

Problem author: Jannik Olbrich

Problem

Given an axis-aligned polygon, find an enclosing axis-aligned polygon with minimum circumference

Solution

= Insight: An optimal solution has no two consecutive convex vertices
— Any optimal solution is rectilinear convex

= What's the circumference of such a polygon? 2(Xmax — Xmin) + 2(Ymax — Ymin)
= This is the same as the rectangle with corners (Xmin, Ymin) and (Xmax, Ymax)
o [Finel G, SGme Ymin and Ymax

= Time complexity: O(n)
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= The polygon must stay convex (angles < 180°) and all internal angles > 90°.
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Problem author: Yidi Zang

Problem
= Given a convex polygon with internal angles > 90°.
= Move one point to maximize the perimeter.

= The polygon must stay convex (angles < 180°) and all internal angles > 90°.

Solution
= Try to move every point individually. 5
= The angle ZBCD is in [90°,180°] if C stays 4

within the Thales semicircle.

= |deally, we move C to the middle top of the
Thales semicircle.

= This maximizes the perimeter.




Solution
= Ideally, we move C to the middle top of the Thales semicircle.
= This maximizes the perimeter.

= However, this is not always possible because of the angles ZABC and ZCDE.
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= The angle ZCDE is < 180°, if C stays in the green halfplane.

= By intuition or triangle inequality, the intersection point between halfplane line and Thales
semicircle is optimal (or middle top of Thales circle).

= There is also a (pink) halfplane for ZCDE > 90° (and < 270°).
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Solution

= The angle ZCDE is < 180°, if C stays in the green halfplane.

= By intuition or triangle inequality, the intersection point between halfplane line and Thales
semicircle is optimal (or middle top of Thales circle).

= There is also a (pink) halfplane for ZCDE > 90° (and < 270°).

= One of the two halfplanes completely contains the semicircle, ignore that one.

5 5
4 4
3 3
2 D B 2 D B
1 1




Solution
= Both angles ZABC and ZCDE have one relevant halfplane.

= The halfplane lines might intersect in the semicircle.




Solution
= Both angles ZABC and ZCDE have one relevant halfplane.
= The halfplane lines might intersect in the semicircle.

= Here, the intersection point of the lines is optimal.







Solution
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In total, there are four possible optimal points:

Middle top of the Thales semicircle.

Intersection ZABC halfplane and Thales semicircle.

. Intersection ZCDE halfplane and Thales semicircle.

. Intersection ZABC and ZCDE halfplane lines.
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In total, there are four possible optimal points:

Middle top of the Thales semicircle.
Intersection ZABC halfplane and Thales semicircle.
Intersection Z CDE halfplane and Thales semicircle.

Intersection ZABC and ZCDE halfplane lines.

Try all of these points and check whether they are valid.



Solution

= |n total, there are four possible optimal points:

. Middle top of the Thales semicircle.
. Intersection ZABC halfplane and Thales semicircle.
. Intersection ZCDE halfplane and Thales semicircle.

Intersection ZABC and ZCDE halfplane lines.

A W N R

= Try all of these points and check whether they are valid.
= Take care of precision issues: Use long double and large ¢ (e.g. € = 107").
= Runtime: O(n).



F: Fair and Square

Problem author: Paul Wild

Problem
You are given a region consisting of some cells in a rectangular grid. Find the longest possible length
such that the region can be divided into squares of that side length.




F: Fair and Square

Problem author: Paul Wild

Solution

= Testing whether a given length is possible can be done in O(h - w):
= Scan over the grid from top left to bottom right
= Whenever an unmarked cell is encountered, it must be the top left corner of a square
= Check if a square can be placed here and mark all cells belonging to it, then continue scanning
= In the end, check if all cells of the region have been marked
= The time does not depend on the size of the square!
= Testing all side lengths from 1 to min(h, w) is too slow for the given bounds
= Key Improvement: Only test side lengths k such that k* divides n, the number of cells
= The worst case in the given bounds is n = 2822400 = 28.32.52.72 which has 40 square divisors

= With this improvement, the solution is fast enough



G: Generating Cool Passwords Company

Problem author: Paul Wild

Problem
Generate a list of n passwords (1 < n < 1000).

1. Passwords must contain at least one each of a-z, A-Z, 0-9 and a special symbol (e.g. ! or #)
2. Passwords must have pairwise edit distance at least 2

3. Passwords must be between 8 and 12 in length



G: Generating Cool Passwords Company

Problem author: Paul Wild

Problem
Generate a list of n passwords (1 < n < 1000).

1. Passwords must contain at least one each of a-z, A-Z, 0-9 and a special symbol (e.g. ! or #)

2. Passwords must have pairwise edit distance at least 2

3. Passwords must be between 8 and 12 in length

Solution
= Here's one of the many approaches that work:
000GCPC!x000, 001GCPC!x001, 002GCPC!x002, ..., 999GCPC!x999

= The common part GCPC!x is used to satisfy rules 1 and 3
= The two counters are used to satisfy rule 2

= Other approaches include using randomization, permutations, or the digits of 7
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Problem author: Andreas Grigorjew

Problem
= We are given a directed graph with n vertices and m edges, and two different vertices u and v.

= Find a vertex c, such that there is a path from u to ¢ and a path from v to c. Or return that no
such vertex exists.
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= Find a vertex c, such that there is a path from u to ¢ and a path from v to c. Or return that no
such vertex exists.
Solution
= |Implement a depth first search or a breadth first search.

= Call two searches: one starting from u, one starting from v.



H: Happy Hookup

Problem author: Andreas Grigorjew

Problem
= We are given a directed graph with n vertices and m edges, and two different vertices u and v.

= Find a vertex c, such that there is a path from u to ¢ and a path from v to c. Or return that no

such vertex exists.

Solution
= |mplement a depth first search or a breadth first search.
= Call two searches: one starting from u, one starting from v.

= Maintain a boolean array for both searches, indicating for every vertex whether it has been
reached by the search.

= Qutput any vertex for which the entry in both arrays is true, or output “no” if no such vertex

exists.

= Runtime: O(n+ m).



I: Island Urbanism

Problem author: icia Lucke, Jannik Olbrich, Paul Wild

Problem
Given a graph G consisting of a large cycle where some edges are replaced by an arbitrary connected

graph (a village). Further, given terminal vertices in G such that every village contains at most 7
terminals. Find a Steiner Tree in G, that is, a subtree of G connecting all terminals.




I: Island Urbanism

Problem author: Felicia Lucke, Jannik Olbrich, Paul Wild

Problem

Given a graph G consisting of a large cycle where some edges are replaced by an arbitrary connected
graph (a village). Further, given terminal vertices in G such that every village contains at most 7
terminals. Find a Steiner Tree in G, that is, a subtree of G connecting all terminals.

Solution
How do we solve this for few terminals?

= Dynamic Programming: Let D(S, i) be the weight of the smallest tree connecting the terminals

in S and vertex i:

D(®,i)=0 Vi

D(S,i) < D(S\{i}, i) if i is a terminal

D(S,i) < D(S,j) +w if there is an edge (i,;) with weight w
D(S,i) < D(A,i)+ D(S\A,i) VACS

= Time Complexity: O(n- 3% 4+ 2% . m - log n) for n vertices, m edges, and k terminals



I: Island Urbanism

Problem author: icia Lucke, Jannik Olbrich, Paul Wild

Problem

Given a graph G consisting of a large cycle where some edges are replaced by an arbitrary connected
graph (a village). Further, given terminal vertices in G such that every village contains at most 7
terminals. Find a Steiner Tree in G, that is, a subtree of G connecting all terminals.

Solution

= The solution is a tree
—> We must cut the cycle somewhere

= Two cases:

= Cut inside a village (s.t. the “leftmost” and “rightmost” vertices are disconnected within the village)
= Cut between two villages (“leftmost” and “rightmost” vertices are connected within the villages)

= Treat “leftmost” and “rightmost” vertices of villages as terminals
—> cases can be computed with DP

= Just try cutting between any adjacent villages, and within each village!
= Take care with villages without terminals

= Time Complexity: O(n-3" +27 - m- log n)



J: Jumbled Packets

Problem author: Yidi Zang

Problem
= This is a multi pass problem.
= You are given a binary string s of length n (1 < n < 10°).
= Encode it into a ternary string of length n.

= After this string is cyclically rotated by some amount, restore the original string s.
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Encode

= |f the string s consists of only ‘0’, do nothing.
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J: Jumbled Packets
Problem author: Yidi Zang

Encode
= |f the string s consists of only ‘0’, do nothing.
= Otherwise, find the first ‘1"
= Replace everything up to that ‘1" with ‘2",
= For example, replace “00001011"” with “22222011".

Decode

= |f the received ternary string consists of only ‘0’, this is already decoded.
= Otherwise, find the substring of ‘2’s.
= Careful, this might wrap over the end, e.g. “22011222".

= Rotate this substring to the beginning, “22011222" — “22222011".
= Replace the last ‘2" with ‘1, all other ‘2’s with ‘0", “22222011" — “00001011".
= Encoding and decoding both take O(n).



K: Karlsruhe Skyline
Problem author: Paul Wild

Problem
Given integers n, a and b, find a permutation of building of heights 1 to n such that a buildings can
be seen from the left and b buildings can be seen from the right, or say that none exists.




K: Karlsruhe Skyline

Problem author: Paul Wild

Solution

= There are two types of cases where no solution exists:

= Only building n can be seen from both sides, so a+ b > n+ 1 is impossible
= Building n must always be next to a 1 clue, so we cannot have a=b =1

= The following setup can be used in the general case:

__ﬁmﬂﬂ

a—1 b—1

= |If a=1or b =1 you may need to reverse the middle part.
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= if 60 * 10 + 45 < t, = Output difference

= Fill gaps between cases by adding difference to lower bracket to solution



L: Labour Laws

Problem author: Yvonne Kothmeier

Problem

Given time t,,. Find the minimum time 0 < t3, such that

= twftb§60*6or
= t, —t, <60%x9 A t, > 30 or
= t, —t, <6010 A t, > 45

Solution 2
= Loop over t, from O to t,
= Check if solution is valid

= Qutput first valid solution
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Problem
Given an array p and an integer d, cover length-d intervals of p so that the mex of the uncovered
numbers is minimized. After a covered interval, the next d numbers cannot be covered.

Observations
= Let p’ be the set of uncovered numbers.
= How to achieve mex(p’) = 0 (the best possible)? = Cover all i with p; = 0.

= In general, covering all i with p; = x implies that mex(p’) < x.
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Problem author: Niklas Mohrin

New problem: Check if a set of indices Z = {/i | pj = x} can be covered.
Greedy algorithm

= Place a covering interval [/, i + d) to start on the first uncovered i € Z.
= Move this interval to the left to start on the smallest index j so that

= it still covers the same relevant indices, that is, [i,i +d)NZ = [j,j + d) N Z, and
= jtis at least d far away from the previous interval.

= If[j+d,j+2d)NZ #0, then Z cannot be covered. Otherwise repeat until all of Z is covered.

Correctness can be proven via greedy stays ahead argument. Time complexity: O(|Z]).

Must include Must be d away from
second x previous interval



M: Mex Hex
Problem author: Niklas Mohrin

Solution
= Partition indices into Z, = {i | pi = x}.

= Check for x =0,1,...,n in increasing order whether Z, can be covered.

Time complexity: Y O(|Z.]) = O(n).
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Jury work
= 784 secret test cases (= 60 per problem)
= 110 jury solutions, 257 jury submissions

= The minimum number of lines the jury needed to solve all problems is
44+32+164+7+33+25+1+124105+16+8+3 416 =278

On average 21.4 lines per problem

= The minimum number of characters the jury needed to solve all problems is
125 + 1083 + 409 + 292 + 869 + 613 + 50 + 366 + 2913 + 432 + 312 + 170 + 502 = 8136

On average 625.8 characters per problem



